Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2020

10.04.2020 | Research Paper

Modeling and experiments on Galfenol energy harvester

verfasst von: Aihua Meng, Chun Yan, Mingfan Li, Wenwu Pan, Jianfeng Yang, Shuaibing Wu

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vibration energy harvesting can solve the energy supplying problem of systems like wireless sensors networks. The Galfenol cantilever beam energy harvester is suitable for this application. According to the electromechanical conversion principle, the constitutive relation of Galfenol is built. A magnetization model is also established, based on the hysteresis model of Galfenol. Combining the magneto-mechanical coupling model, the constitutive relation of Galfenol and the electromagnetic induction law, the mathematical model of Galfenol vibration energy harvester is established. A hyperbolic curve-shaped cantilever beam is designed and its performance is compared to three types of cantilever beams: rectangle, trapezoidal, and triangle. The stress distribution, modal analysis and frequency response of these four shapes of beams are compared. The hyperbolic beam is more suitable for low frequency vibration harvesting. The strain on the beams, output voltage and power output response to these energy harvesters, under different natural vibration frequencies, are determined by simulation. Finally, the simulation results are compared to experimental electric outputs of all four types of prototype beams. The comparative study showed consistency between the experimental and the simulation results, and also that the peak-to-peak induction voltage value of the hyperbolic beam is larger than other shapes of energy harvesters, whose average value is at 269.8 mV. The maximum power output of the hyperbolic beam is 403.8 μW when connected with a 50 Ω resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Foong, F.M., Thein, C.K., Yurchenko, D.: On mechanical damping of cantilever beam-based electromagnetic resonators. Mech. Syst. Signal Process. 119, 120–137 (2019)CrossRef Foong, F.M., Thein, C.K., Yurchenko, D.: On mechanical damping of cantilever beam-based electromagnetic resonators. Mech. Syst. Signal Process. 119, 120–137 (2019)CrossRef
2.
Zurück zum Zitat Yan, B., Zhou, S., Zhao, C., et al.: Electromagnetic energy harvester for vibration control of space rack: modeling, optimization, and analysis. J. Aerosp. Eng. 32(1), 04018126 (2018)CrossRef Yan, B., Zhou, S., Zhao, C., et al.: Electromagnetic energy harvester for vibration control of space rack: modeling, optimization, and analysis. J. Aerosp. Eng. 32(1), 04018126 (2018)CrossRef
3.
Zurück zum Zitat Kambale, R.C., Yoon, W.H., Park, D.S., et al.: Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3Nb2/3)O3-Pb(ZrTi)O3 single crystal/Ni cantilever. J. Appl. Phys. 113(20), 204180 (2013)CrossRef Kambale, R.C., Yoon, W.H., Park, D.S., et al.: Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3Nb2/3)O3-Pb(ZrTi)O3 single crystal/Ni cantilever. J. Appl. Phys. 113(20), 204180 (2013)CrossRef
4.
Zurück zum Zitat Risquez, S., Woytasik, M., Coste, P., et al.: Additive fabrication of a 3D electrostatic energy harvesting microdevice designed to power a leadless pacemaker. Microsyst. Technol. 24, 5017–5026 (2018)CrossRef Risquez, S., Woytasik, M., Coste, P., et al.: Additive fabrication of a 3D electrostatic energy harvesting microdevice designed to power a leadless pacemaker. Microsyst. Technol. 24, 5017–5026 (2018)CrossRef
5.
Zurück zum Zitat Lu, Y., Juillard, J., Cottone, F., et al.: An impact-coupled MEMS electrostatic kinetic energy harvester and its predictive model taking nonlinear air damping effect into account. J. Microrlecteomech. Syst. 27, 1041–1053 (2018)CrossRef Lu, Y., Juillard, J., Cottone, F., et al.: An impact-coupled MEMS electrostatic kinetic energy harvester and its predictive model taking nonlinear air damping effect into account. J. Microrlecteomech. Syst. 27, 1041–1053 (2018)CrossRef
6.
Zurück zum Zitat Zhang, C., Harne, R.L., Li, B., et al.: Statistical quantification of DC power generated by bistable piezoelectric energy harvesters when driven by random excitations. J. Sound Vib. 442, 770–786 (2019)CrossRef Zhang, C., Harne, R.L., Li, B., et al.: Statistical quantification of DC power generated by bistable piezoelectric energy harvesters when driven by random excitations. J. Sound Vib. 442, 770–786 (2019)CrossRef
7.
Zurück zum Zitat Shih, H.A., Su, W.J.: Theoretical analysis and experimental study of a nonlinear U-shaped bi-directional piezoelectric energy harvester. Smart Mater. Struct. 28(1), 015017 (2019)CrossRef Shih, H.A., Su, W.J.: Theoretical analysis and experimental study of a nonlinear U-shaped bi-directional piezoelectric energy harvester. Smart Mater. Struct. 28(1), 015017 (2019)CrossRef
8.
Zurück zum Zitat Kwon, S.C., Onoda, J., Oh, H.U.: Performance evaluation of a novel piezoelectric-based high frequency surge-inducing synchronized switching strategy for micro-scale energy harvesting. Mech. Syst. Signal Pr. 117, 361–382 (2019)CrossRef Kwon, S.C., Onoda, J., Oh, H.U.: Performance evaluation of a novel piezoelectric-based high frequency surge-inducing synchronized switching strategy for micro-scale energy harvesting. Mech. Syst. Signal Pr. 117, 361–382 (2019)CrossRef
9.
Zurück zum Zitat Fatehi, P., Farid, M.: Piezoelectric energy harvesting from nonlinear vibrations of functionally graded beams: finite-element approach. J. Eng. Mech. 145(1), 04018116 (2019)CrossRef Fatehi, P., Farid, M.: Piezoelectric energy harvesting from nonlinear vibrations of functionally graded beams: finite-element approach. J. Eng. Mech. 145(1), 04018116 (2019)CrossRef
10.
Zurück zum Zitat Germer, M., Marschner, U.,Flatau, A.B.: Design and experimental verification of an improved magnetostrictive energy harvester. In: APSSIS 2017, March 26–29, 2017, Portland, OR, US. SPIE, 10164, 101643A (2017) Germer, M., Marschner, U.,Flatau, A.B.: Design and experimental verification of an improved magnetostrictive energy harvester. In: APSSIS 2017, March 26–29, 2017, Portland, OR, US. SPIE, 10164, 101643A (2017)
11.
Zurück zum Zitat Meng, A., Yang, J., Jiang, S., et al.: Design and experiments of a column giant magnetostrictive energy harvester. J. Vib. Shock 36, 175–180 (2017) Meng, A., Yang, J., Jiang, S., et al.: Design and experiments of a column giant magnetostrictive energy harvester. J. Vib. Shock 36, 175–180 (2017)
12.
Zurück zum Zitat Yan, B., Zhang, C., Li, L.: Design and fabrication of a high-efficiency magnetostrictive energy harvester for high-impact vibration systems. IEEE Trans. Magn. 51, 1–4 (2015)CrossRef Yan, B., Zhang, C., Li, L.: Design and fabrication of a high-efficiency magnetostrictive energy harvester for high-impact vibration systems. IEEE Trans. Magn. 51, 1–4 (2015)CrossRef
13.
Zurück zum Zitat Ueno, T., Yamada, S.: Performance of energy harvester using iron-gallium alloy in free vibration. In: INTERMAG 2011, April 25–29, 2011, Taiwan, China, 47, 2407-2409 (2011) Ueno, T., Yamada, S.: Performance of energy harvester using iron-gallium alloy in free vibration. In: INTERMAG 2011, April 25–29, 2011, Taiwan, China, 47, 2407-2409 (2011)
14.
Zurück zum Zitat Rezaeealam, B., Ueno, T., Yamada, S.: Finite element analysis of Galfenol unimorph vibration energy harvester. IEEE Trans. Magn. 48, 3977–3980 (2012)CrossRef Rezaeealam, B., Ueno, T., Yamada, S.: Finite element analysis of Galfenol unimorph vibration energy harvester. IEEE Trans. Magn. 48, 3977–3980 (2012)CrossRef
15.
Zurück zum Zitat Engdahl, G.: Handbook of Giant Magnetostrictive Materials, vol. 107, pp. 1–125. Academic Press, San Diego (2000)CrossRef Engdahl, G.: Handbook of Giant Magnetostrictive Materials, vol. 107, pp. 1–125. Academic Press, San Diego (2000)CrossRef
16.
Zurück zum Zitat Li, Z., Shan, J., Gabbert, U.: Development of reduced preisach model using discrete empirical interpolation method. ITIE 65, 8072–8079 (2018) Li, Z., Shan, J., Gabbert, U.: Development of reduced preisach model using discrete empirical interpolation method. ITIE 65, 8072–8079 (2018)
17.
Zurück zum Zitat Zhao, R., Wang, B.: Modified J-A model and parameter identification based on data mining. J. Intell. Fuzzy Syst. 35, 461–468 (2018)CrossRef Zhao, R., Wang, B.: Modified J-A model and parameter identification based on data mining. J. Intell. Fuzzy Syst. 35, 461–468 (2018)CrossRef
18.
Zurück zum Zitat Jiles, D.C., Li, L.: A new approach to modeling the magnetomechanical effect. J. Appl. Phys. 95, 7058–7060 (2004)CrossRef Jiles, D.C., Li, L.: A new approach to modeling the magnetomechanical effect. J. Appl. Phys. 95, 7058–7060 (2004)CrossRef
19.
Zurück zum Zitat Jiles, D.C.: Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media. IEEE Trans. Magn. 30, 4326–4328 (1994)CrossRef Jiles, D.C.: Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media. IEEE Trans. Magn. 30, 4326–4328 (1994)CrossRef
20.
Zurück zum Zitat Sampath, N., Ezhilarasi, D.: Analysis of cantilevered piezoelectric harvester with different proof mass geometry for low frequency vibrations. Mater. Today: Proc. 5, 21335–21342 (2018) Sampath, N., Ezhilarasi, D.: Analysis of cantilevered piezoelectric harvester with different proof mass geometry for low frequency vibrations. Mater. Today: Proc. 5, 21335–21342 (2018)
21.
Zurück zum Zitat Baker, J., Roundy, S., Wright, P.: Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. In: 3rd IECEC, August 15–18, San Francisco, CA, US, pp. 959–970 (2005) Baker, J., Roundy, S., Wright, P.: Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. In: 3rd IECEC, August 15–18, San Francisco, CA, US, pp. 959–970 (2005)
22.
Zurück zum Zitat Cao, D., Gao, Y., Hu, W.: Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta. Mech. Sin. 35(4), 894–911 (2019)MathSciNetCrossRef Cao, D., Gao, Y., Hu, W.: Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta. Mech. Sin. 35(4), 894–911 (2019)MathSciNetCrossRef
23.
Zurück zum Zitat Li, W., Yang, X.D., Zhang, W., et al.: Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta. Mech. Sin. 35(4), 879–893 (2019)MathSciNetCrossRef Li, W., Yang, X.D., Zhang, W., et al.: Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta. Mech. Sin. 35(4), 879–893 (2019)MathSciNetCrossRef
Metadaten
Titel
Modeling and experiments on Galfenol energy harvester
verfasst von
Aihua Meng
Chun Yan
Mingfan Li
Wenwu Pan
Jianfeng Yang
Shuaibing Wu
Publikationsdatum
10.04.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00943-6

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica Sinica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.