Skip to main content
Log in

An Inverse Approach to Determine Solute and Solvent Permeability Parameters in Artificial Tissues

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study presents a generic numerical model to simulate the coupled solute and solvent transport in tissue sections during addition and removal of chemical additives or cryoprotective agents (CPA; dimethylsulfoxide or DMSO). Osmotic responses of various tissue cells within the artificial tissue are predicted by the numerical model with three model parameters: Permeability of the tissue cell membrane to water (Lp), permeability of the tissue cell membrane to the solute or CPA (ω), and the diffusion coefficient of the solute or CPA in the extracellular space (D). By fitting the model results with published experimental data on solute/water concentrations at various locations within an artificial tissue, we were able to determine the permeability parameters of artificial tissue cells in the presence of 1.538 M DMSO. Lp and ω were determined at three different locations within the artificial tissue assuming a constant value of solute diffusivity (D = 1.0×10−9 m2/s). The best fit values of Lp ranged from 0.59×10−14 to 4.22×10−14 m3/N-s while ω ranged from 0 to 6.6×10−13 mol/N-s. Based on these values of Lp and ω, the solute reflection coefficient, σ = 1 − ω \(\bar v_{{\rm CPA}}\)/L p ranged from 0.9923 to 1.0. The relative values of ω and σ suggest that the artificial tissue cells are relatively impermeable to DMSO (or ω≈0 and σ≈1.0). This observation was used to modify our model to predict the values of Lp and D assuming ω = 0 and σ = 1.0. The best fit values of Lp ranged from 640×10−14 to 2.1×10−14 m3/N-s while D ranged from 0.63×10−9 to 1.52×10−9 m2/s. The permeability parameters obtained in the present study represent the first such effort for artificial tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bevington, P. R., and D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences. 2nd ed. New York: McGraw-Hill, 1992.

    Google Scholar 

  2. Bhowmick, S., C. A. Khamis, and J. C. Bischof. Response of a liver tissue slab to a hyperosmotic sucrose boundary condition: Microscale cellular and vascular level effects. Ann. NY Acad. Sci. 858:147–162, 1998.

    CAS  PubMed  Google Scholar 

  3. Bidault, N. P., B. E. Hammer, and A. Hubel. Water content in an engineering dermal replacement during permeation of Me2SO solutions using rapid MR imaging. Biotechnol. Prog. 17:530–536, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Cussler, E. L. Diffusion: Mass transfer in fluid systems, 2nd ed. New York, NY: Cambridge University Press, 1997.

    Google Scholar 

  5. Devireddy, R. V. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water. Mol. Reprod. Dev. 70:333–343, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Devireddy, R. V., D. J. Smith, and J. C. Bischof. Mass transfer during freezing in rat prostate tumor tissue. AIChE J. 45:639–654, 1999.

    Article  Google Scholar 

  7. Diller, K. R., and M. E. Lynch. An irreversible thermodynamic analysis of cell freezing in the presence of membrane permeable additives. Cryo-Letters 4:295–308, 1983.

    CAS  Google Scholar 

  8. Fedorow, C., L. E. McGann, and G. S. Korbutt. Osmotic and cryoprotectant permeation characteristics of islet cells isolated from the newborn pig pancreas. Cell Transplant. 10:651–659, 2001.

    CAS  PubMed  Google Scholar 

  9. Gilmore, J. A., J. Liu, D. Y. Gao, and J. K. Crister. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum. Reproduc. 12:112–118, 1997.

    Article  CAS  Google Scholar 

  10. Katchalsky, A., and P. F. Curran. Non-equilibrium thermodynamics in biophysics. Harvard Univ. Press, Cambridge, MA, 1965.

    Google Scholar 

  11. Kedem, O., and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27:229–246, 1958.

    Article  CAS  PubMed  Google Scholar 

  12. Kleinhans, F. W. Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism. Cryobiology 37:271–289, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (London) 52:409–415, 1919.

    CAS  Google Scholar 

  14. LeGal, F., P. Gasqui, and J. P. Renard. Differential osmotic behavior of mammalian oocytes before and after maturation: A quantitative analysis using goat oocytes as a model. Cryobiology 31:154–170, 1994.

    Article  CAS  PubMed  Google Scholar 

  15. Leibo, S. P. Water permeability and survival of frozen-thawed mouse ova and embryos. Cryobiology 16:603, 1979.

    Google Scholar 

  16. Levin, R. L. Osmotic effects of introducing and removing permeable cryoprotectants: perfused tissues and organs. In: Advances in Bioengineering New York: ASME Press, 1981, pp. 131–134.

  17. Levin, R. L., and T. W. Miller. An optimum method for the introduction or removal of permeable cryoprotectants: Isolated cell. Cryobiology 18:32–48, 1981.

    Article  CAS  PubMed  Google Scholar 

  18. Leypoldt, J. K. Solute tranposrt across the peritoneal membrane. J. Am. Soc. Nephrol. 13:S84–S91, 2002.

    CAS  PubMed  Google Scholar 

  19. Lide, D. R. CRC Handbook of chemistry and physics, 84th ed. CRC Press: Boca Raton, FL, 2003.

    Google Scholar 

  20. Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 247:C125–C142, 1984.

    CAS  Google Scholar 

  21. McGann, L. E. Mammalian cell water permeability to water and to dimethylsulfoxide. Cryobiology 16:591, 1979.

    Article  Google Scholar 

  22. McGrath, J. J. A microscope diffusion chamber for the determination of the equilibrium and non-equilibrium osmotic response of individual cells. J. Microscopy 139:249–263, 1985.

    Google Scholar 

  23. McGrath, J. J. In: Low temperature biotechnology: Emerging applications and engineering contributions, edited by J. J. McGrath and K. R. Diller, BED-Vol. 10, HTD-Vol. 98. New York: ASME Press, 1988, pp. 273–330.

  24. Montgomery, D. C., and G. C. Runger. Applied Statistics and Probability for Engineers. New York: John Wiley & Sons, 1994, pp. 471–529.

    Google Scholar 

  25. Muldrew, K., B. Sykes, N. Schachar, and L. E. McGrann. Permeation kinetics of dimethylsulfoxide in articular cartilage. Cryo-Letters 17:331–340, 1996.

    CAS  Google Scholar 

  26. Patlak, C. S., D.A. Goldstein, and J. F. Hoffman. The flow of solute and solvent across a two-membrane system. J. Theor. Biol. 5:426–442, 1963.

    Article  CAS  PubMed  Google Scholar 

  27. Paynter, S. J., B. J. Fuller, and R. W. Shaw. Temperature dependence of mature mouse oocyte membrane permeabilities in the presence of a cryoprotectant. Cryobiology 34:122–130, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Pazhayannur, P. V., and J. C. Bischof. Measurement and simulation of water transport during freezing in mammalian liver tissue. ASME J. Biomech. Eng. 119:269–277, 1997.

    CAS  Google Scholar 

  29. Perry, R. H., and D.W. Green. Perry’s chemical engineers’ handbook, 7th ed., New York, NY: McGraw-Hill, 1997.

    Google Scholar 

  30. Poling, B. E., J. M. Prausnitz, and J. P. O’Connell. The properties of gases and liquids, 5th ed. New York, NY: McGraw-Hill, 2000.

    Google Scholar 

  31. Shabana, M., and J. J. McGrath. Cryomicroscope investigation and thermodynamic modeling of the freezing of unfertilized hamster ova. Cryobiology 25:338–354, 1988.

    Article  CAS  PubMed  Google Scholar 

  32. Thirumala, S., M. S. Ferrer, A. Al-Jarrah, B. E. Eilts, D. L. Paccamonti, and R. V. Devireddy. Cryopreservation of canine spermatozoa: Theoretical prediction of optimal cooling rates in the presence and absence of cryoprotective agents. Cryobiology 47:109–124, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Walcerz, D. B., M. J. Taylor, and A. L. Busza. Determination of the kinetics of permeation of dimethylsulfoxide in isolated corneas. Cell Biophys. 26:79–102, 1995.

    CAS  PubMed  Google Scholar 

  34. Wusteman, M. C., D. E. Pegg, M. P. Robinson, L. H. Wang, and P. Fitch. Vitrification media: Toxicity, permeability and dielectric properties. Cryobiology 44, 24–37, 2002.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, X., Z. F. Cui, and J. P. G. Urban. Measurement of the chondrocyte membrane permeability to Me2SO, glycerol and 1,2-propanediol. Med. Eng. Phys. 25:573–579, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram V. Devireddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Devireddy, R.V. An Inverse Approach to Determine Solute and Solvent Permeability Parameters in Artificial Tissues. Ann Biomed Eng 33, 709–718 (2005). https://doi.org/10.1007/s10439-005-1511-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1511-x

Keywords

Navigation