Skip to main content

Advertisement

Log in

Computer-Aided Tissue Engineering of a Human Vertebral Body

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue engineering is developing into a less speculative science involving the careful interplay of numerous design parameters and multidisciplinary professionals. Problem solving abilities and state of the art research tools are required to develop solutions for a wide variety of clinical issues. One area of particular interest is orthopedic biomechanics, a field that is responsible for the treatment of over 700,000 vertebral fractures in the United States alone last year. Engineers are currently lacking the technology and knowledge required to govern the subsistence of cells in vivo, let alone the knowledge to create a functional tissue replacement for a whole organ. Despite this, advances in computer-aided tissue engineering are continually growing. Using a combinatory approach to scaffold design, patient-specific implants may be constructed. Computer-aided design, optimization of geometry using voxel finite element models or other optimization routines, creation of a library of architectures with specific material properties, rapid prototyping, and determination of a defect site using imaging modalities highlight the current availability of design resources. This study proposes a novel methodology from start to finish which could, in the future, be used to design a tissue-engineered construct for the replacement of an entire vertebral body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, T., K. Tsubota, Y. Tomita, and S. J. Hollister. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J. Biomech. Eng. 123(5):403–409, 2001.

    Article  PubMed  Google Scholar 

  2. Asano, S., K. Kaneda, S. Umehara, and S. Tadano. The mechanical properties of the human L4-5 functional spinal unit during cyclic loading. The structural effects of the posterior elements. Spine 17(11):1343–1352, 1992.

    PubMed  Google Scholar 

  3. Borah, B., G. J. Gross, T. E. Dufresne, T. S. Smith, M. D. Cockman, P. A. Chmielewski, M. W. Lundy, J. R. Hartke, and E. W. Sod. Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat. Rec. 265(2):101–110, 2001.

    Article  Google Scholar 

  4. Brody, A. S. CT scanner design and patient radiation exposure. Pediatr. Radiol. 32(4):268–271, 2002.

    Article  PubMed  Google Scholar 

  5. Chu, K. T., Y. Oshida, E. B. Hancock, M. J. Kowolik, T. Barco, and S. L. Zunt. Hydroxyapatite(PMMA composites as bone cements. Biomed. Mater. Eng. 14(1):87–105, 2004.

    PubMed  Google Scholar 

  6. Cooke, M. N., J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. 64B(2):65–69, 2003.

    Article  PubMed  Google Scholar 

  7. Danesi, L., R. Cherubini, L. Ciceri, G. Graziadei, M. D. Cappellini, F. Cavagnini, and S. Ortolani. Evaluation of spine and hip bone density by DXA and QCT in thalassemic patients. J. Pediatr. Endocrinol. Metab. 11(Suppl. 3):961–962, 1998.

    PubMed  Google Scholar 

  8. Davidson, E. T., J. G. Evans, and Y. D. Coble, Jr. Bone mineral density testing by DEXA. J. Fla. Med. Assoc. 83(8):567–568, 1996.

    PubMed  Google Scholar 

  9. Davis, J., Till death do us part. Wired 110–120, 2003.

  10. Dean, D., K. J. Min, and A. Bond, Computer aided design of large-format prefabricated cranial plates. J. Craniofac. Surg. 14(6):819–832, 2003.

    Article  PubMed  Google Scholar 

  11. 3DSystems. 3D Systems—Rapid Prototyping, Advanced Digital Manufacturing, 3D Printing, 3D CAD, 2004.

  12. Feinberg, S. E., S. J. Hollister, J. W. Halloran, T. M. Chu, and P. H. Krebsbach. Image-based biomimetic approach to reconstruction of the temporomandibular joint. Cells Tissues Organs 169(3):309–321, 2001.

    Article  PubMed  Google Scholar 

  13. Fisher, J. P., T. A. Holland, D. Dean, P. S. Engel, and A. G. Mikos. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J. Biomater. Sci. Polym. Ed. 12(6):673–687, 2001.

    Article  PubMed  Google Scholar 

  14. Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. Elmsford, NY: Pergamon Press, 1988.

    Google Scholar 

  15. Gordon, R., R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3):471–481, 1970.

    Article  PubMed  Google Scholar 

  16. Guan, H., M. W. Gaber, F. A. DiBianca, and Y. Zhu. CT reconstruction by using the MLS-ART technique and the KCD imaging system–I: Low-energy X-ray studies. IEEE Trans. Med. Imaging 18(4):355–358, 1999.

    Article  PubMed  Google Scholar 

  17. Hansson, T., B. Roos, and A. Nachemson. The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5(1):46–55, 1980.

    PubMed  Google Scholar 

  18. Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103, 2002.

    Article  PubMed  Google Scholar 

  19. Horch, R. A., N. Shahid, A. S. Mistry, M. D. Timmer, A. G. Mikos, A. R. Barron. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules. 5(5):1990–1998, 2004.

    Article  PubMed  Google Scholar 

  20. Hutmacher, D. W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12(1):107–124, 2001.

    Article  PubMed  Google Scholar 

  21. Ito, M., et al. Bone mineral and other bone components in vertebrae evaluated by QCT and MRI. Skeletal Radiol. 22(2):109–113, 1993.

    Article  PubMed  Google Scholar 

  22. Jacobs, C. R., B. R. Davis, C. J. Rieger, J. J. Francis, M. Saad, and D. P. Fyhrie. NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics. J. Biomech. 32(11):1159–1164, 1999.

    Article  PubMed  Google Scholar 

  23. Jakobs, T. F., C. R. Becker, B. Ohnesorge, T. Flohr, C. Suess, U. J. Schoepf, and M. F. Reiser. Multislice helical CT of the heart with retrospective ECG gating: Reduction of radiation exposure by ECG-controlled tube current modulation. Eur. Radiol. 12(5):1081–1086, 2002.

    Article  PubMed  Google Scholar 

  24. Jee, W. S. S. Integrated bone tissue physiology: Anatomy and physiology. In: Bone Mechanics Handbook, edited by S. C. Cowin. New York: CRC Press, 2001, pp. 1–1 to 1–68.

  25. Jones, L. M., A. Goulding, and D. F. Gerrard. DEXA: A practical and accurate tool to demonstrate total and regional bone loss, lean tissue loss and fat mass gain in paraplegia. Spinal Cord 36(9):637–640, 1998.

    Article  PubMed  Google Scholar 

  26. Kai, C. C. Three-dimensional rapid prototyping technologies and key development areas. Comp. Control Eng. J. 5(4):200–206, 1994.

    Article  Google Scholar 

  27. Keller, T. S., T. H. Hansson, A. C. Abram, D. M. Spengler, and M. M. Panjabi. Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 14(9):1012–1019, 1989.

    PubMed  Google Scholar 

  28. Kopperdahl, D. L., E. F. Morgan, and T. M. Keaveny. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J. Orthop. Res. 20(4):801–805, 2002.

    Article  PubMed  Google Scholar 

  29. Kotani, Y., B. W. Cunningham, A. Cappuccino, K. Kaneda, and P. C. McAfee. The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments. An in vivo study. Spine 23(6):672–682; discussion 682–683, 1998.

    Article  PubMed  Google Scholar 

  30. Kusnoto, B., and C. A. Evans. Reliability of a 3D surface laser scanner for orthodontic applications. Am. J. Orthod. Dentofacial. Orthop. 122(4):342–348, 2002.

    Article  PubMed  Google Scholar 

  31. Kusnoto, B., and C. A. Evans. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447, 2002.

    Article  PubMed  Google Scholar 

  32. Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography. J. Bone Joint Surg. Am. 70(10):1531–1538, 1988.

    PubMed  Google Scholar 

  33. Larsson, C., P. Thomsen, B. O. Aronsson, M. Rodahl, J. Lausmaa, B. Kasemo, and L. E. Ericson. Bone response to surface-modified titanium implants: Studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 17(6):605–616, 1996.

    Article  PubMed  Google Scholar 

  34. Liebschner, M. A. K., K. Sun, and M. A. Wettergreen. Conceptual analysis of a novel bone anchor system. J. Biomech., submitted.

  35. Liebschner, M. A., and M. A. Wettergreen. Scaffold optimization for load bearing applications. In: Southern Biomedical Engineering Conference. Bethesda, MD: Medical and Engineering Publishers, 2002.

    Google Scholar 

  36. Markel, M. D., M. A. Wikenheiser, R. L. Morin, D. G. Lewallen, and E. Y. Chao. Quantification of bone healing. Comparison of QCT, SPA, MRI, and DEXA in dog osteotomies. Acta Orthop. Scand. 61(6):487–498, 1990.

    PubMed  Google Scholar 

  37. Mayo, J. R., J. Aldrich, and N. L. Muller. Radiation exposure at chest CT: A statement of the Fleischner Society. Radiology 228(1):15–21, 2003.

    PubMed  Google Scholar 

  38. McCubbrey, D. A., D. D. Cody, E. L. Peterson, J. L. Kuhn, M. J. Flynn, and S. A. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J. Biomech. 28(8):891–899, 1995.

    Article  PubMed  Google Scholar 

  39. Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21(4):157–161, 2003.

    Article  PubMed  Google Scholar 

  40. Nishitani, H., M. Yasutomo, M. Tominaga, H. Fukui, and H. Yagi. Radiation exposure in CT. Nippon Igaku Hoshasen Gakkai Zasshi 62(7):347–351, 2002.

    PubMed  Google Scholar 

  41. Ono, K., J. Shikata, K. Shimizu, and T. Yamamuro. Bone-fibrin mixture in spinal surgery. Clin. Orthop. (275):133–139, 1992.

  42. Prendergast, P. J. Bone prostheses and implants. In: Bone Biomechanics Handbook, edited by S. C. Cowin. New York: CRC Press, 2001, pp. 35-1 to 35-29.

  43. Prins, S. H., H. L. Jorgensen, L. V. Jorgensen, and C. Hassager. The role of quantitative ultrasound in the assessment of bone: A review. Clin. Physiol. 18(1):3–17, 1998.

    Article  PubMed  Google Scholar 

  44. Rangayyan, R. M., and R. Gordon. Computed tomography from ordinary radiographs for teleradiology. Med. Phys. 10(5):687–690, 1983.

    Article  PubMed  Google Scholar 

  45. Riggs, B. L., and L. J. Melton, 3rd. The worldwide problem of osteoporosis: Insights afforded by epidemiology. Bone 17(Suppl 5):505S–511S, 1995.

    Article  PubMed  Google Scholar 

  46. Ruimerman, R., B. Van Rietbergen, P. Hilbers, and R. Huiskes. A 3-dimensional computer model to simulate trabecular bone metabolism. Biorheology 40(1–3):315–320, 2003.

    PubMed  Google Scholar 

  47. Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8):1487–1497, 2003.

    Article  PubMed  Google Scholar 

  48. Sciperio Inc. A Science Revelation. 2003.

  49. Sciperio Inc. A Science Revelation. 2004.

  50. Soffer, E., J. P. Ouhayoun, and F. Anagnostou. Fibrin sealants and platelet preparations in bone and periodontal healing. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 95(5):521–528, 2003.

    PubMed  Google Scholar 

  51. SolidScape. SolidScape, 2004.

  52. Starly, B., W. Lau, Z. Fang, and W. Sun. “Biomimetic” Model For Heterogeneous Bone Scaffold. In: Southern Biomedical Engineering Conference. Washington, DC: Medical and Engineering Publishers, 2002.

    Google Scholar 

  53. Sun, W., B. Starly, A. Darling, and C. Gomez. Computer aided tissue engineering part I: Overview, scope and challenges. J. Biotechnol. Appl. Biochem. 2003.

  54. Sun, W., B. Starly, A. Darling, C. Gomez. Computer aided tissue engineering part II: Application to biomimetic modeling and design of tissues. J. Biotechnol. Appl. Biochem. 2003.

  55. Sun, W., and P. Lal. Recent development on computer aided tissue engineering—a review. Comput. Methods Programs Biomed. 67(2):85–103, 2002.

    Article  PubMed  Google Scholar 

  56. Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24(1):181–194, 2003.

    Article  PubMed  Google Scholar 

  57. Tan, K. H., C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar, and S. W. Cha. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123, 2003.

    Article  PubMed  Google Scholar 

  58. Templeton, A. K., C. D., and M. A. K. Liebschner. Updating a 3-D vertebral body finite element model using 2-D images. Med. Eng. Phys., submitted.

  59. Therics, Inc. Therics, Inc.—Tissue Engineering Specialists, 2003. Available at http://www.therics.com

  60. Toffoli, T. Cellular automata. In: The Handbook of Brain Theory and Neural Networks, edited by A. M. Cambridge, MA: MIT Press, 1995, pp. 166–169.

  61. Ulrich, D., B. van Rietbergen, A. Laib, and P. Ruegsegger. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25(1):55–60, 1999.

    Article  PubMed  Google Scholar 

  62. Warren, W. L. Enabling tools for computer aided tissue engineering. In: Advances in Tissue Engineering. Houston, TX, 2003.

  63. Webb, P. A. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J. Med. Eng. Technol. 24(4):149–153, 2000.

    Article  PubMed  Google Scholar 

  64. Wettergreen, M. A., M. D. Timmer, J. J. Lemoine, A. G. Mikos, M. A. K. Liebschner. Design of a three-dimensional composite scaffold with varied engineered micro-architecture. Groupe de Recherche Interdisciplinaire sur les Biomateriaux Osteoarticulaires Injectables. Baltimore, MD, 2003.

  65. Wettergreen, M. A., and M. A. K. Liebschner. Scaffold optimization for load bearing applications. In: Southern Biomedical Engineering Conference. Washington, DC: Medical and Engineering Publishers, 2002.

    Google Scholar 

  66. Wiest, P. W., J. A. Locken, P. H. Heintz, and F. A. Mettler, Jr. CT scanning: A major source of radiation exposure. Semin. Ultrasound CT MR 23(5):402–410, 2002.

    Article  PubMed  Google Scholar 

  67. Winder, J., R. S. Cooke, J. Gray, T. Fannin, and T. Fegan. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J. Med. Eng. Technol. 23(1):26–28, 1999.

    Article  PubMed  Google Scholar 

  68. Winslow, R. L., and M. S. Boguski. Genome informatics: Current status and future prospects. Circ. Res. 92(9):953–961, 2003.

    Article  PubMed  Google Scholar 

  69. Yang, K. H., and A. I. King. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9(6):557–565, 1984.

    PubMed  Google Scholar 

  70. Yang, S., K. F. Leong, Z. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1):1–11, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. K. Liebschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wettergreen, M.A., Bucklen, B.S., Sun, W. et al. Computer-Aided Tissue Engineering of a Human Vertebral Body. Ann Biomed Eng 33, 1333–1343 (2005). https://doi.org/10.1007/s10439-005-6744-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-6744-1

Keywords

Navigation