Skip to main content
Log in

Large-Scale 3-D Geometric Reconstruction of the Porcine Coronary Arterial Vasculature Based on Detailed Anatomical Data

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The temporal and spatial distribution of coronary blood flow, pressure, and volume are determined by the branching pattern and three-dimensional (3-D) geometry of the coronary vasculature, and by the mechanics of heart wall and vascular tone. Consequently, a realistic simulation of coronary blood flow requires, as a first step, an accurate representation of the coronary vasculature in a 3-D model of the beating heart. In the present study, a large-scale stochastic reconstruction of the asymmetric coronary arterial trees (right coronary artery, RCA; left anterior descending, LAD; and left circumflex, LCx) of the porcine heart has been carried out to set the stage for future hemodynamic analysis. The model spans the entire coronary arterial tree down to the capillary vessels. The 3-D tree structure was reconstructed initially in rectangular slab geometry by means of global geometrical optimization using parallel simulated annealing (SA) algorithm. The SA optimization was subject to constraints prescribed by previously measured morphometric features of the coronary arterial trees. Subsequently, the reconstructed trees were mapped onto a prolate spheroid geometry of the heart. The transformed geometry was determined through least squares minimization of the related changes in both segments lengths and their angular characteristics. Vessel diameters were assigned based on a novel representation of diameter asymmetry along bifurcations. The reconstructed RCA, LAD and LCx arterial trees show qualitative resemblance to native coronary networks, and their morphological statistics are consistent with the measured data. The present model constitutes the first most extensive reconstruction of the entire coronary arterial system which will serve as a geometric foundation for future studies of flow in an anatomically accurate 3-D coronary vascular model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baroldi, G., and G. Scomazzoni. Coronary Circulation in the Normal and the Pathologic Heart. Washington, DC: Office of the surgeon general. Department of the Army, 1967.

  2. Bassingthwaighte, J. B., D. A. Beard, and Z. Li. The mechanical and metabolic basis of myocardial blood flow heterogeneity. Basic Res. Cardiol. 96:582–594, 2001.

    Article  Google Scholar 

  3. Beard, D. A., and J. B. Bassingthwaighte. The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network. J. Vasc. Res. 37:282–296, 2000.

    Article  Google Scholar 

  4. Berne, R., and R. Rubio. Coronary Circulation in Handbook of Physiology, Section2: the Cardiovascular System, Vol. 1: The Heart. Philadelphia, PA: Williams and Wilkins, Baltimore, Maryland, 1979.

  5. Beyar R., R. Caminker, D. Manor, and S. Sidoman. Coronary flow patterns in normal and ischemic hearts Transmyocardial and Artery to Vein distribution. Ann. Biomed. Eng. 21:435–458, 1993.

    Google Scholar 

  6. Bruschke, A., and B. Buis. Anatomy and Pathology of Large Coronary Vessels in Coronary Circulation: From Basic Mechanisms to Clinical Implications. Leiden, The Netherlands: Nijhoff, Boston, MA, 1987.

  7. Bussemaker, J., A. B. Groeneveld, T. Teerlink, M. Hennekes, N. Westerhof, and J. H. van Beek. Low- and high-blood flow regions in the normal pig heart are equally vulnerable to ischaemia during partial coronary stenosis. Pflugers Arch. 434:785–794, 1997.

    Article  Google Scholar 

  8. Chadwick, R. S., A. Tedgui, J. B. Michel, J. Ohayon, and B. I. Levy. Phasic regional myocardial inflow and outflow: Comparison of theory and experiments. Am. J. Physiol. 258:H1687–H1698, 1990.

    Google Scholar 

  9. Decking, U. K., and J. Schrader, Spatial heterogeneity of myocardial perfusion and metabolism. Basic Res. Cardiol. 93:439–445, 1998.

    Google Scholar 

  10. Fulton, W. Morphometry of the Myocardial Microcirculation in Microcirculation of the heart: Theoretical and Clinical Problems. Berlin: Springer-Verlag, 1982.

    Google Scholar 

  11. Gray, H., P. L. Williams, and L. H. Bannister. Gray's Anatomy: The Anatomical Basis of Medicine and Surgery. New York: Churchill Livingstone, 1995.

    Google Scholar 

  12. Grayson, J. Functional Morphology of the Coronary Circulation in The Coronary Artery. New York: Oxford University Press, 1982.

    Google Scholar 

  13. Hoffman, J. I. Heterogeneity of myocardial blood flow. Basic Res. Cardiol. 90:103–111, 1995.

    Article  Google Scholar 

  14. Huyghe, J. M., C. W. Oomens, and D. H. van Campen. Low Reynolds number steady state flow through a branching network of rigid vessels II. A finite element mixture model. Biorheology 26:73–84, 1989.

    Google Scholar 

  15. Huyghe, J. M., C. W. Oomens, K. H. van Campen, and R. M. Heethaar. Low Reynolds number steady state flow through a branching network of rigid vessels: I. A mixture theory. Biorheology 26:55–71, 1989.

    Google Scholar 

  16. Ingber, L. Simulated annealing: Practice versus theory. J. Math. Comput. Model. 18:29–57, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  17. Izumi, T., M. Yamazoe, and A. Shibata. Three-dimensional characteristics of the intramyocardial microvasculature of hypertrophied human hearts. J. Mol. Cell Cardiol. 16:449–457, 1984.

    Google Scholar 

  18. James, T. Anatomy and Pathology of Small Coronary Arteries in Coronary Circulation: From Basic Mechanisms to Clinical Implications: Leiden, The Netherlands: Nijhoff, 1987.

  19. James, T. N. Anatomy of the Coronary arteries. New York: P. B. Hoeber, 1961.

    Google Scholar 

  20. Kaimovitz, B. Stochastic Morphometric Reconstruction of The Pig's Coronary Tree. MSc Thesis, Technion: Israel Institute of Technology, 2001.

  21. Karch, R., F. Neumann, M. Neumann, and W. Schreiner. Staged growth of optimized arterial model trees. Ann. Biomed. Eng. 28:495–511, 2000.

    Article  Google Scholar 

  22. Kassab, G. S. Morphometry of the Coronary Vasculature in the Pig. PhD Dissertation. San Diego: University of California, 1990.

  23. Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265:H350–H365, 1993.

    Google Scholar 

  24. Kassab, G. S., D. H. Lin, and Y. C. Fung. Morphometry of pig coronary venous system. Am. J. Physiol. 267:H2100–H2113, 1994.

    Google Scholar 

  25. Kassab, G. S., and Y. C. Fung. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. 267:H319–H325, 1994.

    Google Scholar 

  26. Kassab, G. S., J. Berkley, and Y. C. Fung. Analysis of pig's coronary arterial blood flow with detailed anatomical data. Ann. Biomed. Eng. 25:204–217, 1997.

    Google Scholar 

  27. Kassab, G. S., E. Pallencaoe, A. Schatz, and Y. C. Fung. Longitudinal position matrix of the pig coronary vasculature and its hemodynamic implications. Am. J. Physiol. 273:H2832–H2842, 1997.

    Google Scholar 

  28. Klocke, F. J., R. E. Mates, J. M. Canty Jr., and A. K. Ellis. Coronary pressure-flow relationships. Controversial issues and probable implications. Circ. Res. 56:310–323, 1985.

    Google Scholar 

  29. Kresh, J. Y., M. Fox, S. K. Brockman, and A. Noordergraaf. Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am. J. Physiol. 258:H262–H276, 1990.

    Google Scholar 

  30. McAlpine, W. Heart and Coronary Arteries: An Anatomical Atlas for Clinical Diagnosis, Radiological Investigation, and Surgical Treatment. New York: Springer-Verlag, 1975.

    Google Scholar 

  31. Mittal, N., Y. Zhou, S. Ung, C. Linares, S. Molloi and G. S. Kassab. A Computer reconstruction of the entire coronary arterial tree based on detailed morphometric data. Ann. Biomed. Eng. 33(8):1015–1026, 2005.

    Article  Google Scholar 

  32. Nielsen, P. M., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:H1365–H1378, 1991.

    Google Scholar 

  33. Qian, H., and J. B. Bassingthwaighte. A class of flow bifurcation models with lognormal distribution and fractal dispersion. J. Theor. Biol. 205:261–268, 2000.

    Article  Google Scholar 

  34. Reneman, R. S., and T. Arts. Dynamic capacitance of epicardial coronary arteries in vivo. J. Biomech. Eng. 107:29–33, 1985.

    Article  Google Scholar 

  35. Smith, N. P., A. J. Pullan, and P. J. Hunter. Generation of an anatomically based geometric coronary model. Ann. Biomed. Eng. 28:14–25, 2000.

    Google Scholar 

  36. Spaan, J. A. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ. Res. 56:293–309, 1985.

    Google Scholar 

  37. Spaan, J. A., A. J. Cornelissen, C. Chan, J. Dankelman, and F. C. Yin. Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am. J. Physiol. Heart Circ. Physiol. 278:H383–H403, 2000.

    Google Scholar 

  38. Streeter, D. J. Gross Morphometry and Fiber Geometry of the Heart in Handbook of Physiology, Section2: The Cardiovascular System, Vol. 1: The Heart. Philadelphia, PA: Williams and Wilkins, 1979.

  39. Tanaka, A., H. Mori, E. Tanaka, M. U. Mohammed, Y. Tanaka, T. Sekka, K. Ito, Y. Shinozaki, K. Hyodo, M. Ando, K. Umetani, K. Tanioka, M. Kubota, S. Abe, S. Handa, and H. Nakazawa. Branching patterns of intramural coronary vessels determined by microangiography using synchrotron radiation. Am. J. Physiol. 276:H2262–H2267, 1999.

    Google Scholar 

  40. Van Bavel, E. Metabolic and Myogenic Control of Blood Flow Studied on Isolated Small Arteries. PhD Dissertation, University of Amsterdam, 1989.

  41. Van Bavel, E., and J. A. Spaan. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ. Res. 71:1200–1212, 1992.

    Google Scholar 

  42. Van Beek, J. H., J. B. Bassingthwaighte, and S. A. Roger. Fractal networks explain regional myocardial flow heterogeneity. Adv. Exp. Med. Biol. 248:249–257, 1989.

    Google Scholar 

  43. Van Beek, J. H., S. A. Roger, and J. B. Bassingthwaighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 257:H1670–H1680, 1989.

    Google Scholar 

  44. Vis, M. A., P. Sipkema, and N. Westerhof. Modeling pressure-flow relations in cardiac muscle in diastole and systole. Am. J. Physiol. 272:H1516–H1526, 1997.

    Google Scholar 

  45. Wang, C., J. B. Bassigthwaighte, L. J. Weissman. Bifurcating distributive system using Monte Carlo method. Math. Comput. Model. 16:91–98, 1992.

    MATH  Google Scholar 

  46. Weaver, M. E., G. A. Pantely, J. D. Bristow, and H. D. Ladley. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc. Res. 20:907–917, 1986.

    Article  Google Scholar 

  47. Zamir, M. Nonsymmetrical bifurcations in arterial branching. J. Gen. Physiol. 72:837–845, 1978.

    Article  Google Scholar 

  48. Zamir, M., and N. Brown. Arterial branching in various parts of the cardiovascular system. Am. J. Anat. 163:295–307, 1982.

    Article  Google Scholar 

  49. Zamir, M., S. M. Wrigley, and B. L. Langille. Arterial bifurcations in the cardiovascular system of a rat. J. Gen. Physiol. 81:325–335, 1983.

    Article  Google Scholar 

  50. Zamir, M., S. Phipps, B. L. Langille, and T. H. Wonnacott. Branching characteristics of coronary arteries in rats. Can. J. Physiol. Pharmacol. 62:1453–1459, 1984.

    Google Scholar 

  51. Zamir, M. Flow strategy and functional design of the coronary network in. Tokyo; New York: Springer-Verlag, 1990.

  52. Zamir, M. On fractal properties of arterial trees. J. Theor. Biol. 197:517–526, 1999.

    Article  Google Scholar 

  53. Zamir, M. Arterial branching within the confines of fractal L-system formalism. J. Gen. Physiol. 118:267–276, 2001.

    Article  Google Scholar 

  54. Zhou, Y., G. S. Kassab, and S. Molloi. On the design of the coronary arterial tree: A generalization of Murray's law. Phys. Med. Biol. 44:2929–2945, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan S. Kassab PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaimovitz, B., Lanir, Y. & Kassab, G.S. Large-Scale 3-D Geometric Reconstruction of the Porcine Coronary Arterial Vasculature Based on Detailed Anatomical Data. Ann Biomed Eng 33, 1517–1535 (2005). https://doi.org/10.1007/s10439-005-7544-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-7544-3

Key Words

Navigation