Skip to main content
Log in

Laser Printing of Single Cells: Statistical Analysis, Cell Viability, and Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Methods to print patterns of mammalian cells to various substrates with high resolution offer unique possibilities to contribute to a wide range of fields including tissue engineering, cell separation, and functional genomics. This manuscript details experiments demonstrating that BioLP TM Biological Laser Printing, can be used to rapidly and accurately print patterns of single cells in a noncontact manner. Human osteosarcoma cells were deposited into a biopolymer matrix, and after 6 days of incubation, the printed cells are shown to be 100% viable. Printing low numbers of cells per spot by BioLPTM is shown to follow a Poisson distribution, indicating that the reproducibility for the number of cells per spot is therefore determined not by the variance in printed volume per drop but by random sampling statistics. Potential cell damage during the laser printing process is also investigated via immunocytochemical studies that demonstrate minimal expression of heat shock proteins by printed cells. Overall, we find that BioLPTM is able to print patterns of osteosarcoma cells with high viability, little to no heat or shear damage to the cells, and at the ultimate single cell resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azuma, N., N. Akasaka, H. Kito, M. Ikeda, V. Gahtan, T. Sasjima, and B. E. Sumpio. Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 280:H189–H197, 2001.

    Google Scholar 

  2. Bancroft, G. N., V. I. Sikavitsas, J. V. D. Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralization matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner Proc. Nat. Acad. Sci. 99:12600–12604, 2002

    Article  Google Scholar 

  3. Barron, J. A., P. K. Wu, H. D. Ladouceur, and B. R. Ringeisen. Biological laser printing: A novel technique for creating heterogeneous three-dimensional cell patterns Biomed. Microdev. 6:139–147, 2004

    Article  Google Scholar 

  4. Barron, J. A., B. J. Spargo, and B. R. Ringeisen. Biological laser printing of three-dimensional cellular structures. App. Phys. A 79:1027–1030, 2004

    Article  Google Scholar 

  5. Barron, J. A., R. Rosen, J. Jones-Meehan, B. J. Spargo, S. Belkin, and B. R. Ringeisen. Biological laser printing of genetically modified Escherichia coli for biosensor applications. Biosens. Bioelectr. 20:246–252, 2004

    Article  Google Scholar 

  6. Buican, T. N., M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin. Automated single-cell manipulation and sorting by light trapping. App. Optics 26:5311–5316, 1987.

    Article  Google Scholar 

  7. Chrisey, D. B., R. A. McGill, J. S. Horwitz, A. Pique, B. R. Ringeisen, D. M. Bubb, and P. K. Wu. Laser deposition of polymer and biomaterial films. Chem. Rev. 103:553–576, 2003.

    Article  Google Scholar 

  8. Darzynkiewicz, Z., E. Bedner, X. Li, W. Gorczyca, and M. R. Melamed. Laser-scanning cytometry: A new instrumentation with many applications. Exp. Cell Res. 249:1–12, 1999

    Article  Google Scholar 

  9. Davey, H. M., and D. B. Kell. Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev. 60:641–661, 1996.

    Google Scholar 

  10. Freed, L. E., and G. Vunjak-Novakovic. Tissue culture bioreactors: Chondrogenesis as a model system. In: Principles of Tissue Engineering, edited by R. P. Lanza, W. Chick, and R. Langer. Austin: Landes, 1997, pp. 151–165.

    Google Scholar 

  11. Grover, S. C., A. G. Skirtach, R. C. Gauthier, and C. P. Grover. Automated single-cell sorting system based on optical trapping. J. Biomed. Optics 6:14–22, 2001.

    Article  Google Scholar 

  12. Ikeda, K., V. P. Michelangeli, T. J. Martin, and D. M. Findlay. Type-I collagen substrate increases calcitonin and parathyroid-hormone receptor-mediated signal-transduction in UMR 106-06 osteoblast-like cells. J. Cell. Physiol. 156:130–137, 1993.

    Google Scholar 

  13. Jager, E. W. H., C. Immerstrand, K. H. Peterson, K. E. Magnusson, I. Lundstrom, and O. Inganas. The cell clinic: Closable microvials for single cell studies. Biomed. Micro. 4:177–187, 2002

    Article  Google Scholar 

  14. Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Nat. Acad. Sci. 101:2864–2869, 2004

    Article  Google Scholar 

  15. Karaiskou, A., I. Zergioti, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos. Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process. Appl. Surf. Sci. 208–209:245–249, 2003.

    Article  Google Scholar 

  16. Kasili, R. M., B. M. Cullum, G. D. Griffin, and T. Vo-Dinh. Nanosensor for in vivo measurement of the carcinogen benzo[a]pyrene in a single cell. J. Nanosci. Nanotech. 2:653–658, 2002.

    Article  Google Scholar 

  17. Katsuragi, T., and Y. Tani. Single-cell sorting of microorganisms by flow or slide-based (including laser scanning) cytometry. Acta Biotechnol. 21:99–115, 2001

    Article  Google Scholar 

  18. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260:920, 1993.

    CAS  PubMed  Google Scholar 

  19. Mather, J. P., and P. E. Roberts. Introduction to Cell and Tissue Culture. New York: Plenum Press, 1998, pp. 66–70.

    Google Scholar 

  20. Meyer, S. L. Data Analysis for Scientists and Engineers. New York: Wiley, 1975, pp. 202–222.

    Google Scholar 

  21. Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003

    Article  Google Scholar 

  22. Müller, T., G. Gradl, S. Howitz, S. Shirley, T. Schnelle, and G. Fuhr. A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron. 14:247–256, 1999

    Article  Google Scholar 

  23. Nerem, R. M. Cellular engineering. Ann. Biomed. Eng. 19:529, 1991.

    Google Scholar 

  24. Nishizuka, S., L. Charboneau, L. Young, S. Major, W. C. Renhold, M. Waltham, H. Kouros-Mehr, K. J. Bussey, J. K. Lee, V. Espina, P. J. Munson, E. Petricoin III, L. A. Liotta, and J. N. Weinstein. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Nat. Acad. Sci. 100:14229–14234, 2003

    Article  Google Scholar 

  25. Odde, D. J., and M. J. Renn. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 17:385–389, 2000.

    Article  Google Scholar 

  26. Oishi, Y., K. Taniguchi, H. Matsumoto, A. Ishihara, Y. Ohira, and R. R. Roy. Differential responses of HSPs to heat stress in slow and fast regions of rat gastrocnemius muscle. Muscle Nerve 28:587–94, 2003

    Article  Google Scholar 

  27. Reichle, C., K. Sparbier, T. Müller, T. Schnelle, P. Walden, and G. Fuhr. Combined laser tweezers and dielectric field cage for the analysis of receptor-ligand interactions on single cells. Electrophoresis, 22:272–282, 2001

    Article  Google Scholar 

  28. Ringeisen, B. R., D. B. Chrisey, A. Piqué, R. Modi, D. Young, M. Bucaro, J. Jones-Meehan, and B. J. Spargo. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23:161–166, 2002.

    Article  Google Scholar 

  29. Ringeisen, B. R., H. Kim, J. A. Barron, D. B. Krizman, D. B. Chrisey, S. Jackman, R. Y. C. Auyeung, and B. J. Spargo. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 10: 483–491, 2004.

    Article  Google Scholar 

  30. Ringeisen, B. R., P. K. Wu, H. Kim, A. Piqué, R. Y. C. Auyeung, D. Young, D. B. Chrisey, and D. B. Krizman. Picoliter-scale protein microarrays by laser direct write. Biotech. Prog. 18:1126–1129, 2002

    Article  Google Scholar 

  31. Rudensky, B., E. Paz, G. Altarescu, D. Raveh, E. Elstein, and A. Zimran. Fluorescent flow cytometric assay: A new diagnostic tool for measuring beta-glucocerebrosidase activity in Gaucher disease. Blood Cell Mol. Dis. 1:97–99, 2003.

    Article  Google Scholar 

  32. Shapiro, H. H. Practical Flow Cytometry. New York: Wiley-Liss, 1995.

    Google Scholar 

  33. Tazi, K. A., E. Barriere, R. Moreau, J. Heller, P. Sogni, D. Pateron, O. Poirel, and D. Lebrec. Role of shear stress in aortic eNOS up-regulation in rats with biliary cirrhosis. Gastroenterology 122:1869–1877, 2002

    Google Scholar 

  34. Weaver, J. L. Introduction to flow cytometry. Methods 21:199–201, 2000

    Article  Google Scholar 

  35. Wu, P. K., B. R. Ringeisen, J. Callahan, M. Brooks, D. M. Bubb, H. D. Young, A. Piqué, B. J. Spargo, R. A. McGill, and D. B. Chrisey. The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398:607, 2001.

    Article  Google Scholar 

  36. Wu, P. K., B. R. Ringeisen, D. B. Krizman, S. M. Hewitt, C. G. Frondoza, M. Brooks, D. M. Bubb, R. C. Y. Auyeung, H. Kim, A. Pique, J. M. Fitz-Gerald, B. J. Spargo, R. A. McGill, and D. B. Chrisey. Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Rev. Sci. Instr. 74:2546–2557, 2003

    Article  Google Scholar 

  37. Yoshida, S., E. Shimizu, T. Ogura, M. Takada, and S. Sone. Stimulatory effect of reconstituted basement membrane components (Matrigel) on the colony formation of a panel of human l ung cancer cell lines in soft agar. J. Cancer Res. Clin. Oncol. 123:301–309, 1997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley R. Ringeisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron, J.A., Krizman, D.B. & Ringeisen, B.R. Laser Printing of Single Cells: Statistical Analysis, Cell Viability, and Stress. Ann Biomed Eng 33, 121–130 (2005). https://doi.org/10.1007/s10439-005-8971-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8971-x

Keywords

Navigation