Skip to main content
Log in

Development of Ligament-Like Structural Organization and Properties in Cell-Seeded Collagen Scaffolds in vitro

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Acute anterior cruciate ligament (ACL) injuries lead to poor joint function, instability, and eventually osteoarthritis if left untreated. Current surgical treatment options are not ideal; however, tissue engineering may provide mechanically sound, biocompatible reconstructions. Collagen fiber scaffolds were combined with fibroblast-seeded collagen gels and maintained in culture for up to 20 days. The tensile and viscoelastic behavior of the constructs closely mimicked that of natural ligament. Constructs’ mechanical and viscoelastic properties did not degrade over time in culture, and peak stress was significantly higher for constructs with embedded fibroblasts. Immunocytochemical and histological analyses demonstrated cell proliferation and ligament-like organization. We have created an engineered tissue that closely approaches key mechanical and viscoelastic properties of the ACL, does not degrade after 20 days in culture, and is histologically similar to the native tissue. This study should aid in developing effective treatments for ACL injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.

Similar content being viewed by others

REFERENCES

  1. Altman, G. H., R. L. Horan, H. H. Lu, J. Moreau, I. Martin, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141, 2002.

    Article  PubMed  CAS  Google Scholar 

  2. Altman, G. H., R. L. Horan, I. Martin, J. Farhadi, P. R. Stark, et al. Cell differentiation by mechanical stress. Faseb J. 16:270–272, 2002.

    PubMed  CAS  Google Scholar 

  3. Arnold, J. A., T. P. Coker, L. M. Heaton, J. P. Park, and W. D. Harris. Natural history of anterior cruciate tears. Am. J. Sports Med. 7:305–313, 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Asano, H., T. Muneta, H. Ikeda, K. Yagishita, Y. Kurihara, and I. Sekiya. Arthroscopic evaluation of the articular cartilage after anterior cruciate ligament reconstruction: A short-term prospective study of 105 patients. Arthroscopy 20:474–481, 2004.

    PubMed  Google Scholar 

  5. Bellincampi, L. D., R. F. Closkey, R. Prasad, J. P. Zawadsky, and M. G. Dunn. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J. Orthop. Res. 16:414–420, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Bennett, M., R. Ker, N. Dimery, and R. Alexander. Mechanical properties of various mammalian tendons. J. Zool., Lond. 209:537–548, 1986.

    Google Scholar 

  7. Berry, C. C., J. C. Shelton, D. L. Bader, and D. A. Lee. Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng. 9:613–624, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Bourke, S. L., J. Kohn, and M. G. Dunn. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Eng. 10:43–52, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Butler, D., E. S. Grood, F. R. Noyes, and R. Zernicke. Biomechanics of ligaments and tendons. In: Exercise and Sport Science Reviews, Vol. 2, edited by R. Hutton. Philadelphia: The Franklin Institute, 1978.

    Google Scholar 

  10. Cartmell, J. S., and M. G. Dunn. Development of cell-seeded patellar tendon allografts for anterior cruciate ligament reconstruction. Tissue Eng. 10:1065–1075, 2004.

    PubMed  CAS  Google Scholar 

  11. Caruso, A. B., and M. G. Dunn. Functional evaluation of collagen fiber scaffolds for ACL reconstruction: Cyclic loading in proteolytic enzyme solutions. J. Biomed. Mater. Res. A. 69:164–171, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Caruso, A. B., and M. G. Dunn. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds. J. Biomed. Mater. Res. A. 73:388–397, 2005.

    PubMed  Google Scholar 

  13. Cooper, J. A., H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin. Fiber-based tissue-engineered scaffold for ligament replacement: Design considerations and in vitro evaluation. Biomaterials 26:1523–1532, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Dahlstedt, L. J., P. Netz, and N. Dalen. Poor results of bovine xenograft for knee cruciate ligament repair. Acta Orthop. Scand. 60:3–7, 1989.

    PubMed  CAS  Google Scholar 

  15. Dunn, M. G., J. B. Liesch, M. L. Tiku, and J. P. Zawadsky. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J. Biomed. Mater. Res. 29:1363–1371, 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Dunn, M. G., A. J. Tria, Y. P. Kato, J. R. Bechler, R. S. Ochner, et al. Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. A biomechanical and histologic study in rabbits. Am. J. Sports Med. 20:507–515, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Fetto, J. F., and J. L. Marshall. The natural history and diagnosis of anterior cruciate ligament insufficiency. Clin. Orthop. Relat. Res. 29–38, 1980.

  18. Garvey, W. Modified elastic tissue-Masson trichrome stain. Stain Technol. 59:213–216, 1984.

    PubMed  CAS  Google Scholar 

  19. Gentleman, E., A. N. Lay, D. A. Dickerson, E. A. Nauman, G. A. Livesay, and K. C. Dee. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24:3805–3813, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Gentleman, E., E. A. Nauman, K. C. Dee, and G. A. Livesay. Short collagen fibers provide control of contraction and permeability in fibroblast-seeded collagen gels. Tissue Eng. 10:421–427, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Good, L., M. Odensten, L. Pettersson, and J. Gillquist. Failure of a bovine xenograft for reconstruction of the anterior cruciate ligament. Acta Orthop. Scand. 60:8–12, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Goulet, F., L. Germain, D. Rancourt, C. Caron, A. Normand, and F. A. Auger. Tendons and Ligaments. In: Principles of Tissue Engineering, edited by R. P. Lanza, R. Langer, and W. L. Chick. San Diego, CA: Academic, 1997, pp. 633–644.

    Google Scholar 

  23. Goulet, F., D. Rancourt, R. Cloutier, L. Germain, A. R. Poole, and F. A. Auger. Tendons and Ligaments. In: Principles of Tissue Engineering, 2nd edn., edited by R. P. Lanza, R. Langer, and J. Vacanti. San Diego, CA: Academic, 2000, pp. 711–722.

    Google Scholar 

  24. Hafemann, B., K. Ghofrani, H. G. Gattner, H. Stieve, and N. Pallua. Cross-linking by 1-ethyl-3- (3-dimethylaminopropyl)-carbodiimide (EDC) of a collagen/elastin membrane meant to be used as a dermal substitute: Effects on physical, biochemical and biological features in vitro. J. Mater. Sci Mater. Med. 12:437–446, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Huang, D., T. R. Chang, A. Aggarwal, R. C. Lee, and H. P. Ehrlich. Mechanisms and dynamics of mechanical strengthening in ligament- equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21:289–305, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Jackson, D. W., G. E. Windler, and T. M. Simon. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am. J. Sports Med. 18:1–10, 1990, discussion –1.

    Google Scholar 

  27. Johnson, G. A., and F. H. Fu. Anterior cruciate ligament reconstruction: Why do failures occur? In: Instructional Course Lectures. Rosemont, IL: The American Academy of Orthopaedic Surgeons, 1995, pp. 391–406.

    Google Scholar 

  28. Johnson, G. A., D. M. Tramaglini, R. E. Levine, K. Ohno, N. Y. Choi, and S. L. Woo. Tensile and viscoelastic properties of human patellar tendon. J. Orthop. Res. 12:796–803, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Kannus, P., and M. Jarvinen. Conservatively treated tears of the anterior cruciate ligament. Long-term results. J. Bone Joint Surg. Am. 69:1007–1012, 1987.

    PubMed  CAS  Google Scholar 

  30. Kasperczyk, W. J., S. Rosocha, U. Bosch, H. J. Oestern, and H. Tscherne. Age, activity and strength of knee ligaments. Unfallchirurg 94:372–375, 1991.

    PubMed  CAS  Google Scholar 

  31. Laitinen, O., P. Tormala, R. Taurio, K. Skutnabb, K. Saarelainen,et al. Mechanical properties of biodegradable ligament augmentation device of poly(l-lactide) in vitro and in vivo. Biomaterials 13:1012–1016, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Lin, V. S., M. C. Lee, S. O’Neal, J. McKean, and K. L. Sung. Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng. 5:443–452, 1999.

    Article  PubMed  CAS  Google Scholar 

  33. Lu, H. H., J. A. Cooper Jr., S. Manuel, J. W. Freeman, M. A. Attawia, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: In vitro optimization studies. Biomaterials 26:4805–4816, 2005.

    Article  PubMed  CAS  Google Scholar 

  34. Luka, T. L., D. A. Dickerson, and G. A. Livesay. Viscoelastic analysis of collagenous tissue engineered analogues. Faseb. J. 16: Abstract # 396.5, 2002.

  35. Lynch, H. A., W. Johannessen, J. P. Wu, A. Jawa, and D. M. Elliott. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J. Biomech. Eng. 125:726–731, 2003.

    Article  PubMed  Google Scholar 

  36. Marx, R. G., E. C. Jones, M. Angel, T. L. Wickiewicz, and R. F. Warren. Beliefs and attitudes of members of the American Academy of Orthopaedic Surgeons regarding the treatment of anterior cruciate ligament injury. Arthroscopy 19:762–770, 2003.

    PubMed  Google Scholar 

  37. Meaney Murray, M., K. Rice, R. J. Wright, and M. Spector. The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J. Orthop. Res. 21:238–244, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Miyasaka, K., D. Daniel, M. Stone, and P. Hirshman. The incidence of knee ligament injuries in the general population. Am. J. Knee Surg. 4:3–8, 1991.

    Google Scholar 

  39. Murray, M. M., and M. Spector. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials 22:2393–2402, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Noyes, F. R., and E. S. Grood. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Joint Surg. Am. 58:1074–1082, 1976.

    PubMed  CAS  Google Scholar 

  41. O’Connor, W. N., and S. Valle. A combination Verhoeff's elastic and Masson's trichrome stain for routine histology. Stain Technol. 57:207–210, 1982.

    PubMed  CAS  Google Scholar 

  42. Pinkowski, J. L., P. R. Reiman, and S. L. Chen. Human lymphocyte reaction to freeze-dried allograft and xenograft ligamentous tissue. Am. J. Sports Med. 17:595–600, 1989.

    Article  PubMed  CAS  Google Scholar 

  43. Viidik, A. Functional properties of collagenous tissues. Int. Rev. Connect. Tissue Res. 6:127–215, 1973.

    PubMed  CAS  Google Scholar 

  44. von Porat, A., E. M. Roos, and H. Roos. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: A study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 63:269–273, 2004.

    Article  PubMed  CAS  Google Scholar 

  45. Woo, S. L., M. A. Gomez, Y. Seguchi, C. M. Endo, and W. H. Akeson. Measurement of mechanical properties of ligament substance from a bone–ligament–bone preparation. J. Orthop. Res. 1:22–29, 1983.

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto, E., K. Hayashi, and N. Yamamoto. Mechanical properties of collagen fascicles from the rabbit patellar tendon. J. Biomech. Eng. 121:124–131, 1999.

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto, E., W. Iwanaga, H. Miyazaki, and K. Hayashi. Effects of static stress on the mechanical properties of cultured collagen fascicles from the rabbit patellar tendon. J. Biomech. Eng. 124:85–93, 2002.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Russell Auger for invaluable assistance with histology and Ms. Lorraine McGinley for administrative support. The financial support of the National Science Foundation and the Louisiana Board of Regents is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Nauman Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentleman, E., Livesay, G.A., Dee, K.C. et al. Development of Ligament-Like Structural Organization and Properties in Cell-Seeded Collagen Scaffolds in vitro . Ann Biomed Eng 34, 726–736 (2006). https://doi.org/10.1007/s10439-005-9058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9058-4

KEYWORDS

Navigation