Skip to main content
Log in

Measurement and Characterization of Whole-Cell Mechanical Behavior

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An understanding of whole-cell mechanical behavior can provide insight into cellular responses to mechanical loading and diseases in which such responses are altered. However, this aspect of cellular mechanical behavior has received limited attention. In this study, we used the atomic force microscope (AFM) in conjunction with several mechanical characterization methods (Hertz contact theory, an exponential equation, and a parallel-spring recruitment model) to establish a mechanically rigorous method for measuring and characterizing whole-cell mechanical behavior in the deformation range 0–500 nm. Using MC3T3-E1 osteoblasts, measurement repeatability was assessed by performing multiple loading cycles on individual cells. Despite variability in measurements, repeatability of the measurement technique was statistically confirmed. The measurement technique also proved acceptable since only 5% of the total variance across all measurements was due to variations within measurements for a single cell. The parallel-spring recruitment model, a single-parameter model, accurately described the measured nonlinear force–deformation response (R 2 > 0.99) while providing a mechanistic explanation of whole-cell mechanical behavior. Taken together, the results should improve the capabilities of the AFM to probe whole-cell mechanical behavior. In addition, the success of the parallel-spring recruitment model provides insight into the micromechanical basis of whole-cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A-Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.

    PubMed  CAS  Google Scholar 

  2. Alcaraz, J., L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84:2071–2079, 2003.

    PubMed  CAS  Google Scholar 

  3. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310, 1986.

    PubMed  CAS  Google Scholar 

  4. Burr, D. B., A. G. Robling, and C. H. Turner. Effects of biomechanical stress on bones in animals. Bone 30:781–786, 2002.

    Article  PubMed  Google Scholar 

  5. Butt, H. J., and M. Jaschke. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7, 1995.

    Article  Google Scholar 

  6. Charras, G. T., and M. A. Horton. Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J. 83:858–879, 2002.

    PubMed  CAS  Google Scholar 

  7. Charras, G. T., and M. A. Horton. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82:2970–2981, 2002.

    PubMed  CAS  Google Scholar 

  8. Charras, G. T., P. P. Lehenkari, and M. A. Horton. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86:85–95, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Collinsworth, A. M., S. Zhang, W. E. Kraus, and G. A. Truskey. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am. J. Physiol. Cell Physiol. 283:C1219–C1227, 2002.

    PubMed  CAS  Google Scholar 

  10. Costa, K. D., and F. C. Yin. Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy. J. Biomech. Eng. 121:462–471, 1999.

    Article  PubMed  CAS  Google Scholar 

  11. Coughlin, M. F., and D. Stamenovic. A prestressed cable network model of the adherent cell cytoskeleton. Biophys. J. 84:1328–1336, 2003.

    PubMed  CAS  Google Scholar 

  12. Cucina, A., A. V. Sterpetti, G. Pupelis, A. Fragale, and S. Lepidi. Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells. Eur. J. Vasc. Endovasc. Surg. 9:86–92, 1995.

    Article  PubMed  CAS  Google Scholar 

  13. Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Dimitriadis, E. K., F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82:2798–2810, 2002.

    PubMed  CAS  Google Scholar 

  15. Domke, J., and M. Radmacher. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325, 1998.

    Article  CAS  Google Scholar 

  16. Freshney, R. I. Culture of Animal Cells. New York: Wiley-Liss, 2000.

    Google Scholar 

  17. Frisen, M., M. Magi, L. Sonnerup, and A. Viidik. Rheological analysis of soft collagenous tissue. J. Biomech. 2:13–20, 1969.

    Article  PubMed  CAS  Google Scholar 

  18. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag, 1990.

    Google Scholar 

  19. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993.

    Google Scholar 

  20. Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11:1–21, 1969.

    Article  Google Scholar 

  21. Haga, H., S. Sasaki, K. Kawabata, E. Ito, T. Ushiki, and T. Sambongi. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253–258, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Hategan, A., R. Law, S. Kahn, and D. E. Discher. Adhesively-tensed cell membranes: Lysis kinetics and atomic force microscopy probing. Biophys. J. 85:2746–2759, 2003.

    PubMed  CAS  Google Scholar 

  23. Hofmann, U. G., C. Rotsch, W. J. Parak, and M. Radmacher. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J. Struct. Biol. 119:84–91, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA: Sinauer Associates, 2001.

    Google Scholar 

  25. Hutter, J. L., and J. Bechhoefer. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64:1868–1873, 1993.

    Article  CAS  Google Scholar 

  26. Jaasma, M. J. Osteoblast Mechanical Behavior and Its Adaptation to Mechanical Loading. PhD Dissertation, University of California, Berkeley, CA, 2004.

    Google Scholar 

  27. Janmey, P. A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78:763–781, 1998.

    PubMed  CAS  Google Scholar 

  28. Johnson, K. L. Contact Mechanics. Cambridge, MA: Cambridge University Press, 1985.

    Google Scholar 

  29. Lee, C. A., and T. A. Einhorn. The bone organ system. In: Osteoporosis, edited by R. Marcus, D. Feldman, and J. Kelsey, Vol. 1. New York: Academic, 2001, pp. 3–20.

    Chapter  Google Scholar 

  30. Mahaffy, R. E., S. Park, E. Gerde, J. Kas, and C. K. Shih. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86:1777–1793, 2004.

    PubMed  CAS  Google Scholar 

  31. Mahaffy, R. E., C. K. Shih, F. C. MacKintosh, and J. Kas. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85:880–883, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A. 94:849–854, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Mathur, A. B., G. A. Truskey, and W. M. Reichert. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78:1725–1735, 2000.

    PubMed  CAS  Google Scholar 

  34. McElfresh, M., E. Baesu, R. Balhorn, J. Belak, M. J. Allen, and R. E. Rudd. Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl 2):6493–6497, 2002.

    Article  PubMed  CAS  Google Scholar 

  35. Miyazaki, H., and K. Hayashi. Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries. Med. Biol. Eng. Comput. 37:530–536, 1999.

    Article  PubMed  CAS  Google Scholar 

  36. Ohashi, T., Y. Ishii, Y. Ishikawa, T. Matsumoto, and M. Sato. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Biomed. Mater. Eng. 12:319–327, 2002.

    PubMed  CAS  Google Scholar 

  37. Pavalko, F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y. F. Hsieh, J. Qiu, and R. L. Duncan. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton–integrin interactions. Am. J. Physiol. 275:C1591–C1601, 1998.

    PubMed  CAS  Google Scholar 

  38. Petersen, N. O., W. B. McConnaughey, and E. L. Elson. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc. Natl. Acad. Sci. U.S.A. 79:5327–5331, 1982.

    Article  PubMed  CAS  Google Scholar 

  39. Radmacher, M., M. Fritz, C. M. Kacher, J. P. Cleveland, and P. K. Hansma. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70:556–567, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Raucher, D., and M. P. Sheetz. Characteristics of a membrane reservoir buffering membrane tension. Biophys. J. 77:1992–2002, 1999.

    PubMed  CAS  Google Scholar 

  41. Rotsch, C., and M. Radmacher. Drug-induced changes in cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78:520–535, 2000.

    PubMed  CAS  Google Scholar 

  42. Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3:47–57, 1965.

    Article  Google Scholar 

  44. Sugawara, M., Y. Ishida, and H. Wada. Local mechanical properties of guinea pig outer hair cells measured by atomic force microscopy. Hear. Res. 174:222–229, 2002.

    Article  PubMed  Google Scholar 

  45. Sugawara, M., Y. Ishida, and H. Wada. Mechanical properties of sensory and supporting cells in the organ of Corti of the guinea pig cochlea—study by atomic force microscopy. Hear. Res. 192:57–64, 2004.

    Article  PubMed  Google Scholar 

  46. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, N., K. Naruse, D. Stamenovic, J. J. Fredberg, S. M. Mijailovich, I. M. Tolic-Norrelykke, T. Polte, R. Mannix, and D. E. Ingber. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. U.S.A. 98:7765–7770, 2001.

    Article  PubMed  CAS  Google Scholar 

  48. Wu, H. W., T. Kuhn, and V. T. Moy. Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397, 1998.

    PubMed  CAS  Google Scholar 

  49. You, J., C. E. Yellowley, H. J. Donahue, Y. Zhang, Q. Chen, and C. R. Jacobs. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to load-induced oscillatory fluid flow. J. Biomech. Eng. 122:387–393, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Jaasma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaasma, M.J., Jackson, W.M. & Keaveny, T.M. Measurement and Characterization of Whole-Cell Mechanical Behavior. Ann Biomed Eng 34, 748–758 (2006). https://doi.org/10.1007/s10439-006-9081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9081-0

Keywords

Navigation