Skip to main content
Log in

Computational Simulations of the Human Magneto- and Electroenterogram

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many functional pathologies of the small intestine are difficult to diagnose clinically without an invasive surgical intervention. Often such conditions are associated with a disruption of the normal electrical activity occurring within the musculature of the small intestine. The far field electrical signals on the torso surface arising from the electrical activity within the small intestine cannot be reliably measured. However, it has been shown that abnormal electrical activity in the small intestine can be distinguished by recording the magnetic fields of intestinal origin immediately outside the torso surface. We have developed an anatomically-based computational model to simulate slow wave propagation in the small intestine, the resulting cutaneous electrical field and the magnetic field outside the torso. Using both a one-dimensional and a three-dimensional model of the duodenum we investigate the degree of detail that is required to realistically simulate this far field activity. Our results indicate that some of the qualitative behavior in the far field activity can be replicated using a one-dimensional model, although there are clear situations where the greater level modeling detail is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

REFERENCES

  1. Aliev, R. R., W. Richards, and J. P. Wikswo. A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204:21–28, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Bauer, A. J., N. G. Publicover, and K. M. Sanders. Origin and spread of slow waves in canine gastric antral circular muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 249:G800–G806, 1985.

    CAS  Google Scholar 

  3. Bauer, A. J., J. B. Reed, and K. M. Sanders. Slow wave heterogeneity within the circular muscle of the canine gastric antrum. J. Physiol. (Lond.) 366:221–232, 1985.

    CAS  Google Scholar 

  4. Bradley, C. P., G. M. Harris, and A. J. Pullan. The computational performance of a high-order coupled FEM/BEM procedure in electropotential problems. IEEE Trans. Biomed. Eng. 48:1238–1250, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Bradley, C. P., A. J. Pullan, and P. J. Hunter. Effects of material properties and geometry on electrocardiographic forward simulations. Ann. Biomed. Eng. 28:721–741, 2000.

    Article  PubMed  CAS  Google Scholar 

  6. Bradshaw, L. A., S. H. Allos, J. P. Wikswo Jr., and W. O. Richards. Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. Am. J. Physiol. 272:G1159–G1167, 1997.

    PubMed  CAS  Google Scholar 

  7. Bradshaw, L. A., J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards. The human vector magnetogastrogram and magnetoenterogram. IEEE Trans. Biomed. Eng. 46:959–970, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Buist, M., G. Sands, P. Hunter, and A. Pullan. A deformable finite element derived finite difference method for cardiac activation problems. Ann. Biomed. Eng. 31:577–588, 2003.

    Article  PubMed  Google Scholar 

  9. Chen, J. D. Z., B. D. Schirmer, and R. W. McCallum. Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Trans. Biomed. Eng. 40:598–602, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Christensen, J., H. P. Schedl, and J. A. Clifton. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with variety of diseases. Gastroenterology. 50:309–315, 1966.

    PubMed  CAS  Google Scholar 

  11. Edwards, F. R., and G. D. Hirst. An electrical analysis of slow wave propagation in the guinea-pig gastric antrum. J. Physiol. 571(Pt 1):179–189, 2006.

    PubMed  CAS  Google Scholar 

  12. Fernandez, J. W., P. Mithraratne, S. F. Thrupp, M. H. Tawhai, and P. J. Hunter. Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2:139–155, 2004.

    Article  PubMed  CAS  Google Scholar 

  13. Fitzhugh, R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys. J. 1:445–466, 1961.

    Article  Google Scholar 

  14. Fleckenstein, P. Migrating electrical spike activity in the fasting human small intestine. Am. J. Dig. Dis. 23:769–775, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Gabella, G. On the musculature of the gastro-intestinal tract of the guinea-pig. Anat. Embryol. 163:135–156, 1981.

    Article  Google Scholar 

  16. Gulrajani, R. M. Bioelectricity and Biomagnetism, New York: Wiley, 1998.

    Google Scholar 

  17. Hegde, S. S., S. A. Seidel, J. K. Ladipo, L. A. Bradshaw, S. Halter, and W. O. Richards. Effects of Mesenteric Ischemia and Reperfusion on Small Bowel Electrical Activity. J. Surg. Res. 74:86–95, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Hirst, G. D., A. P. Garcia-Londono, and F. R. Edwards. Propagation of slow waves in the guinea-pig gastric antrum. J. Physiol. 571(Pt 1):165–177, 2006.

    PubMed  Google Scholar 

  19. Lammers, W. J., B. Stephen, J. R. Slack, S. Dhanasekaran. Anisotropic propagation in the small intestine. Neurogastroenterol. Motil. 14:357–364, 2002.

    Article  PubMed  CAS  Google Scholar 

  20. Lin, A. S., M. L. Buist, N. P. Smith, and A. J. Pullan. Modelling slow wave activity in the small intestine. J. Theor. Biol. in press 2006.

  21. Lines, G. T., M. L. Buist, P. Grottum, A. J. Pullan, J. Sundnes, and A. Tveito. Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Comput. Vis. Sci. 5:215–239, 2002.

    Article  Google Scholar 

  22. Nagumo, J., S. Animoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Engineers. 50:2061–2070, 1962.

    Google Scholar 

  23. Pullan, A., L. Cheng, R. Yassi, and M. Buist. Modelling gastrointestinal bioelectric activity. Prog. Biophys. Mol. Biol. 85:523–550, 2004.

    Article  PubMed  Google Scholar 

  24. Rush, S., J. A. Abildsko, and R. McFee. Resistivity of body tissues at low frequencies. Circ. Res. 12:40–50, 1963.

    PubMed  CAS  Google Scholar 

  25. Sanders, K. M., S. D. Koh, and S. M. Ward. Interstitial Cells of Cajal as Pacemakers in the Gastrointestinal Tract. Annu. Rev. Physio. 68:307–343, 2006

    Article  CAS  Google Scholar 

  26. Sanders, K. M., T. Ordog, S. D. Koh, S. Torihashi, and S. M. Ward. Development and plasticity of interstitial cells of Cajal. Neurogastroenterol. Motil. 11:311–338, 1999.

    Article  PubMed  CAS  Google Scholar 

  27. Spitzer, V., M. J. Ackerman, A. L. Scherzinger, and D. Whitlock. The visible human male: A technical report. J. Am. Med. Inform. Assoc. 3:118–130, 1996.

    PubMed  CAS  Google Scholar 

  28. Trew, M., I. Le Grice, B. Smaill, and A. Pullan. A Finite Volume Method for Modeling Discontinuous Electrical Activation in Cardiac Tissue. Ann. Biomed. Eng. 33:590–602, 2005.

    Article  PubMed  Google Scholar 

  29. Zhang, J., D. Chen, and H. Gao. Functionship of Electrogastrogram in the Diagnosis of Gi Diseases in Children. China Natl. J. New Gastroenterol. 2(Suppl 1):81c–82c, 1996.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by grants from NZIMA, the Royal Society of NZ and an NIH grant R01-DK64775. The authors gratefully acknowledge Prof. Kenton Sanders and Prof. Wim Lammers for their warm discussions and data sharing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Pullan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, A.S., Buist, M.L., Cheng, L.K. et al. Computational Simulations of the Human Magneto- and Electroenterogram. Ann Biomed Eng 34, 1322–1331 (2006). https://doi.org/10.1007/s10439-006-9142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9142-4

Keywords

Navigation