Skip to main content

Advertisement

Log in

Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A major drawback in the operation of mechanical heart valve prostheses is thrombus formation in the near valve region. Detailed flow analysis in this region during the valve closure phase is of interest in understanding the relationship between shear stress and platelet activation. A fixed-grid Cartesian mesh flow solver is used to simulate the blood flow through a bi-leaflet mechanical valve employing a two-dimensional geometry of the leaflet with a pivot point representing the hinge region. A local mesh refinement algorithm allows efficient and fast flow computations with mesh adaptation based on the gradients of the flow field in the leaflet-housing gap at the instant of valve closure. Leaflet motion is calculated dynamically based on the fluid forces acting on it employing a fluid-structure interaction algorithm. Platelets are modeled and tracked as point particles by a Lagrangian particle tracking method which incorporates the hemodynamic forces on the particles. A platelet activation model is included to predict regions which are prone to platelet activation. Closure time of the leaflet is validated against experimental studies. Results show that the orientation of the jet flow through the gap between the housing and the leaflet causes the boundary layer from the valve housing to be drawn in by the shear layer separating from the leaflet. The interaction between the separating shear layers is seen to cause a region of intensely rotating flow with high shear stress and high residence time of particles leading to high likelihood of platelet activation in that region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

References

  1. Anderson G. H., J. D. Hellums, J. L. Moake, C. P. J. Alfrey. Platelet lysis and aggregation in shear fields. Blood Cells. 4:499–511, 1978

    PubMed  CAS  Google Scholar 

  2. Avrahami I., M. Rosenfeld, S. Einav, M. Eichler, H. Reul. Can vortices in the flow across mechanical heart valves contribute to cavitation? Med. Biol. Eng. Comput. 38:93–97, 2000

    Article  PubMed  CAS  Google Scholar 

  3. Bluestein D., S. Einav, N. H. C. Hwang. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart-valve prosthesis. J. Biomech. 27:1369–1378, 1994

    Article  PubMed  CAS  Google Scholar 

  4. Bluestein D., Y. M. Li, I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35:1533–1540, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Bluestein D., L. Niu, R. T. Schoephoerster, M. K. Dewanjeet. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25:344–356, 1997

    PubMed  CAS  Google Scholar 

  6. Bluestein D., E. Rambod, M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng.-Trans. Asme. 122:125–134, 2000

    Article  CAS  Google Scholar 

  7. Bluestein D., W. Yin, K. Affeld, J. Jesty. Flow-induced platelet activation in mechanical heart valves. J. Heart Valve Dis. 13:501–508, 2004

    PubMed  Google Scholar 

  8. Bodnar E., G. L. Grunkemeier, S. Gabbay. Heart valve replacement: A statistical review of 35 years’ results – Discussion. J. Heart Valve Dis. 8:470–471, 1999

    Google Scholar 

  9. Brown C. H., L. B. Leverett, C. W. Lewis, C. P. Alfrey, J. D. Hellums. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J. Lab. Clin. Med. 86:462–471, 1975

    PubMed  Google Scholar 

  10. Butchart E. G., A. Ionescu, N. Payne, J. Giddings, G. L. Grunkemeier, A. G. Fraser. A new scoring system to determine thromboembolic risk after heart valve replacement. Circulation. 108:68–74, 2003

    Article  Google Scholar 

  11. Cannegieter S. C., F. R. Rosendaal, E. Briet. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. 89:635–641, 1994

    PubMed  CAS  Google Scholar 

  12. Chen H., J. S. Marshall. A Lagrangian vorticity method for two-phase particulate flows with two-way phase coupling. J. Comput. Phys. 148:169–198, 1999

    Article  Google Scholar 

  13. Cheng R., Y. G. Lai, K. B. Chandran. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 12:772–780, 2003

    PubMed  Google Scholar 

  14. Cheng R., Y. G. Lai, K. B. Chandran. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32:1471–1483, 2004

    Article  PubMed  Google Scholar 

  15. Cheon G. J., K. B. Chandran. Dynamic behavior analysis of mechanical monoleaflet heart valve prostheses in the opening phase. J. Biomechan. Eng. 115:389–395, 1993

    CAS  Google Scholar 

  16. Choi C. R., C. N. Kim, Y. J. Kwon, J. W. Lee. Pulsatile blood flows through a bileaflet mechanical heart valve with different approach methods of numerical analysis; Pulsatile flows with fixed leaflets and interacted with moving leaflets. Ksme Int. J. 17:1073–1082, 2003

    Google Scholar 

  17. Colantuoni G., J. D. Hellums, Moake J.L., Alfrey C.P. Jr. The response of human platelets to shear stress at short exposure times. Trans. Am. Soc. Art. Int. Org. 23:626–631, 1977

    CAS  Google Scholar 

  18. Einav S., D. Bluestein. Dynamics of blood flow and platelet transport in pathological vessels. Ann. NY Acad. Sci. 1015:351–366, 2004

    Article  PubMed  Google Scholar 

  19. Ellis J. T., T. M. Healy, A. A. Fontaine, R. Saxena, A. P. Yoganathan. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel(TM) bileaflet mechanical valve with clear housing. J. Heart Valve Dis. 5:591–599, 1996

    PubMed  CAS  Google Scholar 

  20. Ellis J. T., T. M. Healy, A. A. Fontaine, M. W. Weston, C. A. Jarret, R. Saxena, A. P. Yoganathan. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves. J. Heart Valve Dis. 5:600–606, 1996

    PubMed  CAS  Google Scholar 

  21. Ellis J. T., B. R. Travis, A. P. Yoganathan. An in vitro study of the hinge and near-field forward flow dynamics of the St. jude Medical (R) Regent (TM) bileaflet mechanical heart valve. Ann. Biomed. Eng. 28:524–532, 2000

    Article  PubMed  CAS  Google Scholar 

  22. Gao Z. B., N. Hosein, F. E. Dai, N. H. C. Hwang. Pressure and flow fields in the hinge region of bileaflet mechanical heart valves. J. Heart Valve Dis. 8:197–205, 1999

    PubMed  CAS  Google Scholar 

  23. Ge L., H. L. Leo, F. Sotiropoulos, A. P. Yoganathan. Flow. in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng.-Trans. Asme 127:782–797, 2005

    Article  Google Scholar 

  24. Giddens D. P., A. P. Yoganathan, F. J. Schoen. Prosthetic Cardiac Valves. Cardiovasc. Pathol. 2:S167–S177, 1993

    Article  Google Scholar 

  25. Greaves D. A quadtree adaptive method for simulating fluid flows with moving interfaces. J. Comput. Phys. 194:35–56, 2004

    Article  Google Scholar 

  26. Greaves D. Simulation of interface and free surface flows in a viscous fluid using adapting quadtree grids. Int. J. Numer. Meth. Fluids 44:1093–1117, 2004

    Article  Google Scholar 

  27. Gross J. M., M. C. S. Shu, F. F. Dai, J. Ellis, A. P. Yoganathan. Microstructural flow analysis within a bileaflet mechanical heart valve hinge. J. Heart Valve Dis. 5:581–590, 1996

    PubMed  CAS  Google Scholar 

  28. Healy T. M., A. A. Fontaine, J. T. Ellis, S. P. Walton, A. P. Yoganathan. Visualization of the hinge flow in a 5 : 1 scaled model of the medtronic parallel bileaflet heart valve prosthesis. Exp. Fluids 25:512–518, 1998

    Article  CAS  Google Scholar 

  29. Hellums J. D. 1993 Whitaker Lecture – biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994

    Google Scholar 

  30. Hellums J. D., D. M. Peterson, N. A. Stathopoulos, J. L. Moake, T. D. Giorgio. Studies of mechanisms of shear-induced platelet activation. Cerebral Ischemia and Hemorheology. 80–89, 1987.

  31. Jesty J., W. Yin, P. Perrotta,and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time (vol 14, pg 143, 2003). Platelets. 14:399–399, 2003.

  32. Kelly S. G. D. Computational fluid dynamics insights in the design of mechanical heart valves. Art. Org. 26:608–613, 2002

    Article  Google Scholar 

  33. Kelly S. G. D., P. R. Verdonck, J. A. M. Vierendeels, K. Riemslagh, E. Dick, G. G. Van Nooten. A three-dimensional analysis of flow in the pivot regions of an ATS bileaflet valve. Int. J. Art. Org. 22:754–763, 1999

    CAS  Google Scholar 

  34. Kim J., P. Moin. Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59:308–323, 1985

    Article  Google Scholar 

  35. King M. J., J. Corden, T. David, J. Fisher. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: Comparison of experimental and numerical results. J. Biomech. 29:609–618, 1996

    Article  PubMed  CAS  Google Scholar 

  36. King M. J., T. David, J. Fisher. Three-dimensional study of the effect of two leaflet opening angles on the time-dependent flow through a bileaflet mechanical heart valve. Med. Eng. Phys. 19:235–241, 1997

    Article  PubMed  CAS  Google Scholar 

  37. Kini V., C. Bachmann, C. Fontaine, S. Deutsch, J. M. Tarbell. Flow visualization in mechanical heart valves: occluder rebound and cavitation potential. Ann. Biomed. Eng. 28:431–441, 2000

    Article  PubMed  CAS  Google Scholar 

  38. Lai Y. G., K. B. Chandran, J. Lemmon. A numerical simulation of mechanical heart valve closure fluid dynamics. J. Biomech. 35:881–892, 2002

    Article  PubMed  Google Scholar 

  39. Leo H. L., Z. M. He, J. T. Ellis, A. P. Yoganathan. Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. J. Thorac. Cardiov. Sur. 124:561–574, 2002

    Article  Google Scholar 

  40. Liu H., S. Krishnan, S. Marella, H. S. Udaykumar. Sharp interface Cartesian grid method II: A technique for simulating droplet interactions with surfaces of arbitrary shape. J. Comput. Phys. 210:32–54, 2005

    Article  Google Scholar 

  41. Manning K. B., V. Kini, A. A. Fontaine, S. Deutsch, J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Art. Org. 27:840–846, 2003

    Article  Google Scholar 

  42. Marella S., S. Krishnan, H. Liu, H. S. Udaykumar. Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comput. Phys. 210:1–31, 2005

    Article  Google Scholar 

  43. Peskin C. S., D. M. Mcqueen. Cardiac fluid-dynamics. Crit. Rev. Biomed. Eng. 20:451–459, 1992.

    Google Scholar 

  44. Peskin C. S., B. F. Printz. Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys. 105:33–46, 1993

    Article  Google Scholar 

  45. Purvis N. B. J., T. D. Giorgio. The effects of elongational stress exposure on the activation and aggregation of blood platelets. Biorheology. 28:355–367, 1991

    PubMed  Google Scholar 

  46. Ramstack J. M., L. Zuckerman, L. F. Mockros. Shear – induced activation of platelets. J. Biomech. 12:113–125, 1979

    Article  PubMed  CAS  Google Scholar 

  47. Reif T. H., M. D. Silver, H. KopPenhoefer, M. C. Huffstutler. Estimation of the abrasive wear coefficient in Lillehei–Kaster cardiac valve prostheses. J. Biomech. Eng. 19:93–101, 1986

    Article  CAS  Google Scholar 

  48. Rosenfeld M., I. Avrahami, S. Einav. Unsteady effects on the flow across tilting disk valves. J. Biomech. Eng.-Trans. Asme 124:21–29, 2002

    Article  Google Scholar 

  49. Sethian J. A. Tracking interfaces with level sets. Am. Sci. 85:254–263, 1997

    Google Scholar 

  50. Sethian J. A. Fast marching methods. Siam Rev. 41:199–235, 1999

    Article  Google Scholar 

  51. Shi Y. B., Y. Zhao, T. J. H. Yeo, N. H. C. Hwang. Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition. J. Heart Valve Dis. 12:245–255, 2003

    PubMed  Google Scholar 

  52. Shipkowitz T., J. Ambrus, J. Kurk, K. Wickramasinghe. Evaluation technique for bileaflet mechanical valves. J. Heart Valve Dis. 11:275–282, 2002

    PubMed  Google Scholar 

  53. Simon H. A., H. L. Leo, J. Carberry, A. P. Yoganathan. Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann. Biomed. Eng. 32:1607–1617, 2004

    Article  PubMed  Google Scholar 

  54. Sorensen E. N., G. W. Burgreen, W. R. Wagner, J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27:436–448, 1999

    Article  PubMed  CAS  Google Scholar 

  55. Sorensen E. N., G. W. Burgreen, W. R. Wagner, J. F. Antaki. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27:449–458, 1999

    Article  PubMed  CAS  Google Scholar 

  56. Tambasco M., D. A. Steinman. Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann. Biomed. Eng. 31:1054–1065, 2003

    Article  PubMed  Google Scholar 

  57. Tillmann W., H. Reul, M. Herold, K. H. Bruss, J. van Gilse. In-vitro wall shear measurements at aortic valve prostheses. J. Biomech. 17:263–279, 1984

    Google Scholar 

  58. Udaykumar H. S., S. Marella, S. Krishnan. Sharp-interface simulation of dendritic growth with convection: benchmarks. Int. J. Heat Mass Trans. 46:2615–2627, 2003

    Article  Google Scholar 

  59. Udaykumar H. S., R. Mittal, P. Rampunggoon, A. Khanna. A sharp interface cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174:345–380, 2001

    Article  CAS  Google Scholar 

  60. Wang J. H., H. Yao, C. J. Lim, Y. Zhao, T. J. H. Yeo, N. H. C. Hwang. Computational fluid dynamics study of a protruded-hinge bileaflet mechanical heart valve. J. Heart Valve Dis. 10:254–262, 2001

    Article  PubMed  CAS  Google Scholar 

  61. Woo Y. R., F. P. Williams, P. D. Faughan, A. P. Yoganathan. Pulsatile flow visualization studies with aortic and mitral mechanical valve prostheses. Chem. Eng. Commun. 47:23–48, 1986

    Google Scholar 

  62. Woo Y. R., A. P. Yoganathan. Pulsatile flow velocity and shear-stress measurements on the St-Jude bileaflet valve prosthesis. Scand. J. Thorac. Cardiov. Sur. 20:20–28, 1986

    Google Scholar 

  63. Wootton D. M., D. N. Ku. Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis. Ann. Rev. Biomed. Eng. 1:299–329, 1999

    Article  CAS  Google Scholar 

  64. Yang Y., H. S. Udaykumar. Sharp interface Cartesian grid method III: solidification of pure materials and binary solutions. J. Comput. Phys. 210:55–74, 2005

    Article  CAS  Google Scholar 

  65. Yin W., Y. Alemu, K. Affeld, J. Jesty, D. Bluestein. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32:1058–1066, 2004

    Article  PubMed  Google Scholar 

  66. Yiu K. F. C., D. M. Greaves, S. Cruz, A. Saalehi, A. G. L. Borthwick. Quadtree grid generation: Information handling, boundary fitting and CFD applications. Comput. Fluids. 25:759–769, 1996

    Article  Google Scholar 

  67. Yoganathan A. P., K. B. Chandran, F. Sotiropoulos. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng. 33:1689–1694, 2005

    Article  PubMed  Google Scholar 

  68. Yoganathan A. P., Z. M. He, S. C. Jones. Fluid mechanics of heart valves. Ann. Rev. Biomed. Eng. 6:331–362, 2004

    Article  CAS  Google Scholar 

  69. Yoganathan A. P., Y. R. Woo, H. W. Sung. Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses. J. Biomech. 19:433–442, 1986

    Article  PubMed  CAS  Google Scholar 

  70. Zhang J. N., A. L. Bergeron, Q. Yu, C. Sun, L. McBride, P.F. Bray, J. F. Dong. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation. Thromb. Haemostasis 90:672–678, 2003.

    Google Scholar 

  71. Zhang J. N., A. L. Bergeron, Q. Yu, C. Sun, L. V. McIntire, López J.A., J. F. Dong. Platelet aggregation and activation under complex patterns of shear stress. Thromb. Haemostasis 88:817–821, 2002

    Google Scholar 

Download references

Acknowledgments

Partial support of this work from a grant from the NIH (NHLBIHL-071814) and the Iowa Department of Economic Development are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Chandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, S., Udaykumar, H., Marshall, J. et al. Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure. Ann Biomed Eng 34, 1519–1534 (2006). https://doi.org/10.1007/s10439-006-9194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9194-5

Keywords

Navigation