Skip to main content
Log in

A Model of NO/O2 Transport in Capillary-perfused Tissue Containing an Arteriole and Venule Pair

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The goal of this study was to investigate the complex co-transport of nitric oxide (NO) and oxygen (O2) in a paired arteriole–venule, surrounded by capillary-perfused tissue using a computer model. Blood flow was assumed to be steady in the arteriolar and venular lumens and to obey Darcy’s law in the tissue. NO consumption rate was assumed to be constant in the core of the arteriolar and venular lumen and to decrease linearly to the endothelium. Average NO consumption rate by capillary blood in a unit tissue volume was assumed proportional to the blood flux across the volume. Our results predict that: (1) the capillary bed, which connects the arteriole and venule, facilitates the release of O2 from the vessel pair to the surrounding tissue; (2) decreasing the distance between arteriole and venule can result in a higher NO concentration in the venular wall than in the arteriolar wall; (3) in the absence of capillaries in the surrounding tissue, diffusion of NO from venule to arteriole contributes little to NO concentration in the arteriolar wall; and (4) when capillaries are added to the simulation, a significant increase of NO in the arteriolar wall is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Boegehold M. A. (1996) Shear-dependent release of venular nitric oxide: effect on arteriolar tone in rat striated muscle. Am. J. Physiol. 271(2 Pt 2):H387–395

    PubMed  CAS  Google Scholar 

  2. Bohlen H. G. (1998) Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. Am. J. Physiol. 275(2 Pt 2):H542–550

    PubMed  CAS  Google Scholar 

  3. Brinck H., Werner J. (1994) Estimation of the thermal effect of blood flow in a branching countercurrent network using a three-dimensional vascular model. J. Biomech. Eng. 116(3):324–330

    PubMed  CAS  Google Scholar 

  4. Brown G. C. (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim. Biophys. Acta. 1504(1):46–57

    Article  PubMed  CAS  Google Scholar 

  5. Buerk D. G., Saidel G. M. (1977) A comparison of two nonclassical models for oxygen consumption in brain and liver tissue. Adv. Exp. Med. Biol. 94:225–232

    PubMed  CAS  Google Scholar 

  6. Buerk D. G., Bridges E. W. (1986) A simplified algorithm for computing the variation in oxyhemoglobin saturation with pH, PCO2, T and DPG. Chem. Eng. Commun. 47:113–124

    CAS  Google Scholar 

  7. Buerk D. G. (2001) Can we model NO biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Ann. Rev. Biomed. Eng. 3:109–143

    Article  CAS  Google Scholar 

  8. Carlsen E., Comroe J. H. (1958) The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J. Gen. Physiol. 42(1):83–107

    Article  PubMed  CAS  Google Scholar 

  9. Chen K., Popel A. S. (2006) Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free. Radic. Biol. 41(4):668–80

    Article  CAS  Google Scholar 

  10. Chen X., Jaron D., Barbee K. A., Buerk D. G. (2006) The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. J. Appl. Physiol. 100(2):482–492

    Article  PubMed  CAS  Google Scholar 

  11. Davis M. J., Ferrer P. N., Gore R. W. (1986) Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am. J. Physiol. 250(2 Pt 2):H291–303

    PubMed  CAS  Google Scholar 

  12. Ellsworth M. L., Pittman R. N. (1990) Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am. J. Physiol. 258(4 Pt 2):H1240–1243

    PubMed  CAS  Google Scholar 

  13. Fagan K. A., Tyler R. C., Sato K., Fouty B. W., Morris K. G. Jr., Huang P. L., Mcmurtry I. F., Rodman D. M. (1999) Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am. J. Physiol. 277(3 Pt 1):L472–478

    PubMed  CAS  Google Scholar 

  14. Fåhraeus R. (1928) Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefässystem. Klin. Wochenschr. 7:100–106

    Article  Google Scholar 

  15. Falcone J. C., Bohlen H. G. (1990) EDRF from rat intestine and skeletal muscle venules causes dilation of arterioles. Am. J. Physiol. 258(5 Pt 2):H1515–1523

    PubMed  CAS  Google Scholar 

  16. Falcone J. C., Meininger G. A. (1997) Arteriolar dilation produced by venule endothelium-derived nitric oxide. Microcirculation 4(2):303–310

    Article  PubMed  CAS  Google Scholar 

  17. Forstermann U., Closs E. I., Pollock J. S., Nakane M., Schwarz P., Gath I., Kleinert H. (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23(6 Pt 2):1121–1131

    PubMed  CAS  Google Scholar 

  18. Granger H. J., Shepherd A. P. Jr. (1973) Intrinsic microvascular control of tissue oxygen delivery. Microvasc. Res. 5(1):49–72

    Article  PubMed  CAS  Google Scholar 

  19. House S. D., Lipowsky H. H. (1987) Microvascular hematocrit and red cell flux in rat cremaster muscle. Am. J. Physiol. 252(1 Pt 2):H211–222

    PubMed  CAS  Google Scholar 

  20. Hsu R., Secomb T. W. (1992) Analysis of oxygen exchange between arterioles and surrounding capillary-perfused tissue. J. Biomech. Eng. 114:227–231

    PubMed  CAS  Google Scholar 

  21. Kashiwagi S., Kajimura M., Yoshimura Y., Suematsu M. (2002) Nonendothelial source of nitric oxide in arterioles but not in venules: alternative source revealed in vivo by diaminofluorescein microfluorography. Circ. Res. 91(12):e55–64

    Article  PubMed  CAS  Google Scholar 

  22. Kavdia M., Popel A. S. (2006) Venular Endothelium Derived NO Can Affect Paired Arteriole: A Computational Model. Am. J. Physiol. Heart Circ. Physiol. 290(2):H716–23

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi H., Takizawa N. (2002) Imaging of oxygen transfer among microvessels of rat cremaster muscle. Circulation 105:1713–1719

    Article  PubMed  Google Scholar 

  24. Kurihara N., Alfie M. E., Sigmon D. H., Rhaleb N. E., Shesely E. G., Carretero O. A. (1998) Role of nNOS in blood pressure regulation in eNOS null mutant mice. Hypertension 32(5):856–861

    PubMed  CAS  Google Scholar 

  25. Lamkin-Kennard K. A., Buerk D. G., Jaron D. (2004) Interactions between NO and O2 in the Microcirculation: A mathematical Analysis. Microvasc. Res. 68:38–50

    Article  PubMed  CAS  Google Scholar 

  26. Lash J. M., Bohlen H. G. (1987) Perivascular and tissue PO2 in contracting rat spinotrapezius muscle. Am. J. Physiol. 252(6 Pt 2):H1192–1202

    PubMed  CAS  Google Scholar 

  27. Long D. S., Smith M. L., Pries A. R., Ley K., Damiano E. R. (2004) Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc. Natl. Acad. Sci. USA 101(27):10060–10065

    Article  PubMed  CAS  Google Scholar 

  28. Mitchell D., Tyml K. (1996) Nitric oxide release in rat skeletal muscle capillary. Am. J. Physiol. 270(5 Pt 2):H1696–1703

    PubMed  CAS  Google Scholar 

  29. Nase G. P., Tuttle J., Bohlen H. G. (2003) Reduced perivascular PO2 increases nitric oxide release from endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 285:H507–H515

    PubMed  CAS  Google Scholar 

  30. Nellore K., Harris N. (2004) Nitric oxide measurements in rat mesentery reveal disrupted venulo-arteriolar communication in diabetes. Microcirculation 11:415–423

    Article  PubMed  CAS  Google Scholar 

  31. Popel A. S., Pittman R. N., Ellsworth M. L. (1989) Rate of oxygen loss from arterioles is an order of magnitude higher than expected. Am. J. Physiol. 256(3 Pt 2):H921-H924

    PubMed  CAS  Google Scholar 

  32. Rengasamy A., Johns R. A. (1996) Determination of K m for oxygen of nitric oxide synthase isoforms. J. Pharmacol. Exp. Ther. 276(1):30–33

    PubMed  CAS  Google Scholar 

  33. Saito Y., Eraslan A., Hester R. L. (1993) Importance of venular flow in control of arteriolar diameter in hamster cremaster muscle. Am. J. Physiol. 265(4 Pt 2):H1294–1300

    PubMed  CAS  Google Scholar 

  34. Secomb T. W., Hsu R. (1994) Simulation of O2 transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am. J. Physiol. 267(3 Pt 2):H1214–1221

    PubMed  CAS  Google Scholar 

  35. Sharan M., Popel A. S. (1988) A mathematical model of countercurrent exchange of oxygen between paired arteriole and venules. Math. Biosci. 91:17–34

    Article  Google Scholar 

  36. Tateishi N., Suzuki Y., Soutani M., Maeda N. (1994) Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance. J. Biomech. 27(9):1119–1125

    Article  PubMed  CAS  Google Scholar 

  37. Thomas D. D., Liu X., Kantrow S. P., Lancaster J. R. Jr. (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc. Natl. Acad. Sci. USA 98(1):355–360

    Article  PubMed  CAS  Google Scholar 

  38. Tsai A. G., Friesenecker B., Mazzoni M. C., Kerger H., Buerk D. G., Johnson P. C., Intaglietta M. (1998) Microvascular and tissue oxygen gradients in the rat mesentery. Proc. Natl. Acad. Sci. USA 95:6590–6595

    Article  PubMed  CAS  Google Scholar 

  39. Tsoukias N. M., Popel A. S. (2003) A model of nitric oxide capillary exchange. Microcirculation 10(6):479–495

    Article  PubMed  CAS  Google Scholar 

  40. Vadapalli A., Pittman R. N., Popel A. S. (2000) Estimating oxygen transport resistance of the microvascular wall. Am. J. Physiol. Heart Circ. Physiol. 279:657–671

    Google Scholar 

  41. Vaughn M. W., Kuo L., Liao J. C. (1998) Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am. J. Physiol. 274(6 Pt 2):H2163–2176

    PubMed  CAS  Google Scholar 

  42. Vukosavljevic N., Jaron D., Barbee K. A., Buerk D. G. (2006) Quantifying the l-arginine paradox in vivo. Microvasc Res. 71(1):48–54

    Article  PubMed  CAS  Google Scholar 

  43. Wagner L., Hoey J. G., Erdely A., Boegehold M. A., Baylis C. (2001) The nitric oxide pathway is amplified in venular vs arteriolar cultured rat mesenteric endothelial cells. Microvasc. Res. 62(3):401–409

    Article  PubMed  CAS  Google Scholar 

  44. Weerappuli D. P. V., Popel A. S. (1989) A model of oxygen exchange between an arteriole or venule and the surrounding tissue. J. Biomech. Eng. 111:24–31

    Article  PubMed  CAS  Google Scholar 

  45. Weinbaum S., Xu L. X., Zhu L., Ekpene A. (1997) A new fundamental bioheat equation for muscle tissue: part I - blood perfusion term. J. Biomech. Eng. 119:278–288

    PubMed  CAS  Google Scholar 

  46. Whorton A. R., Simonds D. B., Piantadosi C. A. (1997) Regulation of nitric oxide synthesis by oxygen in vascular endothelial cells. Am. J. Physiol. 272(6 Pt 1):L1161–1166

    PubMed  CAS  Google Scholar 

  47. Ye G. F., Moore T. W., Buerk D. G., Jaron D. (1994) A compartmental model for oxygen-carbon dioxide coupled transport in the microcirculation. Ann. Biomed. Eng. 22(5):464–479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by: NIH/HL 068164 and NSF/BES 0301446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Jaron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Buerk, D.G., Barbee, K.A. et al. A Model of NO/O2 Transport in Capillary-perfused Tissue Containing an Arteriole and Venule Pair. Ann Biomed Eng 35, 517–529 (2007). https://doi.org/10.1007/s10439-006-9236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9236-z

Keywords

Navigation