Skip to main content
Log in

Electromagnetic Power Absorption and Temperature Changes due to Brain Machine Interface Operation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To fully understand neural function, chronic neural recordings must be made simultaneously from 10s or 100s of neurons. To accomplish this goal, several groups are developing brain machine interfaces. For these devices to be viable for chronic human use, it is likely that they will need to be operated and powered externally via a radiofrequency (RF) source. However, RF exposure can result in tissue heating and is regulated by the FDA/FCC. This paper provides an initial estimate of the amount of tissue heating and specific absorption rate (SAR) associated with the operation of a brain-machine interface (BMI). The operation of a brain machine interface was evaluated in an 18-tissue anatomically detailed human head mesh using simulations of electromagnetics and bio-heat phenomena. The simulations were conducted with a single chip, as well as with eight chips, placed on the surface of the human brain and each powered at four frequencies (13.6 MHz, 1.0 GHz, 2.4 GHz, and 5.8 GHz). The simulated chips consist of a wire antenna on a silicon chip covered by a Teflon dura patch. SAR values were calculated using the finite-difference time-domain method and used to predict peak temperature changes caused by electromagnetic absorption in the head using two-dimensional bio-heat equation. Results due to SAR alone show increased heating at higher frequencies, with a peak temperature change at 5.8 GHz of approximately 0.018°C in the single-chip configuration and 0.06°C in the eight-chip configuration with 10 mW of power absorption (in the human head) per chip. In addition, temperature elevations due to power dissipation in the chip(s) were studied. Results show that for the neural tissue, maximum temperature rises of 3.34°C in the single-chip configuration and 7.72°C in the eight-chip configuration were observed for 10 mW dissipation in each chip. Finally, the maximum power dissipation allowable in each chip before a 1.0°C temperature increase (most stringent standards as denoted in the FDA guidelines) is exceeded in the head was simulated and found to be 2.92 mW in the single-chip configuration and 1.25 mW in the eight-chip configuration. As thermal heating due to SAR was insignificant, this study suggests that wireless electromagnetics, i.e., RF may be a viable option for powering, and communicating with brain machine interfaces for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure. 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Notes

  1. The first author utilized such approach in measuring temperature rises due to external coils during MRI experiment at 340 MHz.30

References

  1. Abraham, D., R. Rennaker, and T. S. Ibrahim. An FDTD Analysis of Wireless Brain-Machine Interface Devices. USNC/CNC/URSI North American Radio Science Meeting. Washington, DC, USNC/CNC/URSI, p. 37.5, 2005

  2. Abraham, D., R. Rennaker, and T. S. Ibrahim. The Electromagnetics of Wireless Brain Machine Interface Operation. International Zurich Symposium on Electromagnetic Compatibility Singapore, pp 121–124, 2006

  3. Berenger J. P. (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput. Phys. 114:185–200

    Article  Google Scholar 

  4. Bernardi P., Cavagnaro M., Lin J. C., Pisa S., Piuzzi E. (2004) Distribution of SAR and temperature elevation induced in a phantom by a microwave cardiac ablation catheter. IEEE Trans. Microw. Theror. Techn. 52:1978–1986

    Article  Google Scholar 

  5. Chen Z. P., Miller W. H., Roemer R. B., Cetas T. C. (1990) Errors between two- and three-dimensional thermal model predictions of hyperthermia treatments. Int J Hyperthermia 6:175–191

    Article  PubMed  Google Scholar 

  6. Chen J., Feng Z., Jin J. M. (1998) Numerical simulation of SAR and B1-field inhomogeneity of shielded RF coils loaded with the human head. IEEE Trans. Biomed. Eng. 45:650–659

    Article  PubMed  CAS  Google Scholar 

  7. Chen J. Y., Gandhi O. P. (1992) Numerical Simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors. IEEE Trans. Biomed. Eng. 39:209–216

    Article  PubMed  CAS  Google Scholar 

  8. Demarco S. C., Lazzi G., Liu W., Weiland J. D., Humayun M. S. (2003) Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator – part I: models and methods. IEEE Trans. Anten. Propagat. 51:2274–2285

    Article  Google Scholar 

  9. Duck, F. A. Physical properties of tissue: a comprehensive reference book, Academic Press, 1990

  10. Fear E. C., Li X., Hagness S. C., Stuchly M. A. (2002) Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 49:812–822

    Article  PubMed  Google Scholar 

  11. Gabriel, C. Compilation of dielectric properties of body tissues at RF and microwave frequencies. Airforce Technical Report, 1996, AL/OE-TR-1996-0037: p. (A)

  12. Gandhi O. P., Lazzi G., Tinniswood A., Yu Q. S. (1999) Comparison of numerical and experimental methods for determination of SAR and radiation patterns of handheld wireless telephones. Bioelectromagnetics Suppl 4:93–101

    Article  PubMed  CAS  Google Scholar 

  13. Ghovanloo, M., and K. Najafi. A wideband frequency-shift keying wireless link for inductively powered biomedical implants IEEE Trans. Circuit. Syst. 51:2374–2383, 2004

    Google Scholar 

  14. Ghovanloo M., Najafi K. (2004) A modular 32-site wireless neural stimulation microsystem. IEEE J. Solid-State Circuit. 39:2457–2466

    Article  Google Scholar 

  15. Gosalia, K., G. Lazzi, and M. Humayun. Investigation of a microwave data telemetry link for a retinal prosthesis. IEEE Trans. Microw. Theror. Techn. 52(2):1925–1933, 2004

    Google Scholar 

  16. Gu Z., Rappaport C. M., Wang P. J., VanderBrink B. A. (1999) A 2 ¼-turn spiral antenna for catheter cardiac ablation. IEEE Trans. Biomed. Eng. 46:1480–1482

    Article  PubMed  CAS  Google Scholar 

  17. Ibrahim, T. S. A numerical analysis of radiofrequency power requirements in magnetic resonance imaging experiments IEEE Transactions on Microwave Theory and Techniques special issue on Biological Effects and Medical Applications of RF/Microwaves 52:1999–2003, 2004

  18. Ibrahim T. S., Abduljalil A. M., Lee R., Baertlein B. A., Robitaille P.-M. L. (2001) Analysis of B1 field profiles and SAR values for multi-strut transverse electromagnetic RF coils in high field MRI application. Phys. Med. Biol. 46:2545–2555

    Article  PubMed  CAS  Google Scholar 

  19. Ibrahim T. S., Kangarlu A., Chakeres D. W. (2005) Design and Performance Issues of RF coils utilized in Ultra High Field MRI: Experimental and Numerical Evaluations. IEEE Bio Med. Eng. 52:1278–1284

    Article  Google Scholar 

  20. Ibrahim T. S., Lee R., Abduljalil A. M., Baertlein B. A., Robitaille P.-M. L. (2001) Calculations of EM interactions with biological tissue: Magnetic resonance Imaging at ultra high field. Appl. Comput. Electromag. 16:138–144

    Google Scholar 

  21. Ibrahim T. S., Lee R., Abduljalil A. M., Baertlein B. A., Robitaille P.-M. L. (2001) Dielectric resonances and B 1 field inhomogeneity in UHFMRI: Computational analysis and experimental findings. Magn. Reson. Imaging 19:219–226

    Article  PubMed  CAS  Google Scholar 

  22. Ibrahim T. S., Lee R., Abduljalil A. M., Baertlein B. A., Robitaille P.-M. L. (2001) Effect of RF Coil Excitation on Field Inhomogeneity at Ultra High Fields: A Field Optimized TEM Resonator. Magn. Reson. Imaging 19:1339–1347

    Article  PubMed  CAS  Google Scholar 

  23. Ibrahim T. S., Lee R., Baertlein B. A., Robitaille P.-M. L. (2001) B1 Field Homogeneity and SAR Calculations in the High Pass Birdcage Coil. Phys. Med. Biol. 46:609–619

    Article  PubMed  CAS  Google Scholar 

  24. Ibrahim, T. S., C. Mitchell, R. Abraham, and P. Schmalbrock. In-depth Study of the Electromagnetics of Ultra High Field MRI. NMR Biomed. 20(1):58–68, 2007

    Article  PubMed  Google Scholar 

  25. Ibrahim T. S., Mitchell C., Lee R., Schmalbrock P., Chakeres D. W. (2005) Perspective into The Operation of RF Coils at 1.5–11.7 Tesla. Magn. Reson. Med. 54(3):683–690

    Article  PubMed  Google Scholar 

  26. Jaehoon, K. and Y. Rahmat-Samii. Implanted antennas inside a human body: simulations, designs, and characterizations IEEE Trans. Microw. Theror. Techn. 52(2):1934–1943, 2004

    Google Scholar 

  27. Kang G., Gandhi O. P. (2002) SARs for pocket-mounted mobile telephones at 835 and 1900 MHz. Phys Med Biol 47:4301–4313

    Article  PubMed  Google Scholar 

  28. Kangarlu A., Ibrahim T. S., Shellock F. G. (2005) Effects of Coil Design and Field Polarization on RF Heating Inside of a Head Phantom. Magn. Reson. Imaging 23:53–60

    Article  PubMed  Google Scholar 

  29. Kennedy, P. R., R. A. E. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe. Direct control of a computer from the human central nervous system. IEEE Trans. 8:198–202, 2000 [http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=86]

    Google Scholar 

  30. Lazzi G., DeMarco S. C., Liu W., Weiland J. D., Humayun M. S. (2003) Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator – part II: results. IEEE Trans. Anten. Propagat. 51:2286–2295

    Article  Google Scholar 

  31. Mojarradi M., Binkley D., Blalock B., Andersen R., Ulshoefer N., Johnson T., Del Castillo L. (2003) A miniaturized neuroprosthesis suitable for implantation into the brain. IEEE Trans. Neural Syst. Rehabil. Eng. 11:38–42

    Article  PubMed  Google Scholar 

  32. Neihart, N. M., and R. R. Harrison. Micropower circuits for bidirectional wireless telemetry in neural recording applications IEEE Trans. Biomed. Eng. 52:1950–1959, 2005

    Google Scholar 

  33. Popovic M., Hagness S. C., Taflove A. (1998) Finite-difference time-domain analysis of a complete transverse electromagnetic cell loaded with liquid biological media in culture dishes. IEEE Trans. Biomed. Eng. 45:1067–1076

    Article  PubMed  CAS  Google Scholar 

  34. Rappaport C. (2004) Cardiac tissue ablation with catheter-based microwave heating. Int J Hyperthermia 20:769–80

    Article  PubMed  CAS  Google Scholar 

  35. Schuderer J., Samaras T., Oesch W., Spat D., Kuster N. (2004) High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1800 MHz. IEEE Trans. Microw. Theror. Techn. 52:2057–2066

    Article  Google Scholar 

  36. Schwartz, A. B. Cortical Neural Prosthetics Annual Review of Neuroscience 27:487–507, 2004

    Google Scholar 

  37. Shock S. A., Meredith K., Warner T. F., Sampson L. A., Wright A. S., Winter T. C., Mahvi D. M., Fine J. P., Lee F. T. (2004) Microwave ablation with loop antenna: in vivo porcine liver model. Radiology 231:143–149

    Article  PubMed  Google Scholar 

  38. Sminia P., Van Der Zee J., Wondergem J., Haveman J. (1994) Effect of hyperthermia on the central nervous system: a review. Int. J. Hyperthermia 10(1):1–30

    PubMed  CAS  Google Scholar 

  39. Wang J., Fujiwara O. (1999) FDTD computation of temperature rise in the human head for portable telephones. IEEE Trans. Microw. Theror. Techn. 47:1528–1534

    Article  Google Scholar 

  40. Wise, K. D., D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi. Wireless Implantable Microsystems: High-Denisty Electronic Interfaces to the Nervous System, Proceedings of the IEEE 92(1). January 2004

  41. Yee K. S. (1966) Numerical solutions of the initial boundary value problems involving Maxwell’s equations in isotropic media IEEE Trans. Ant Prop 14:302–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer S. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, T.S., Abraham, D. & Rennaker, R.L. Electromagnetic Power Absorption and Temperature Changes due to Brain Machine Interface Operation. Ann Biomed Eng 35, 825–834 (2007). https://doi.org/10.1007/s10439-007-9264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9264-3

Keywords

Navigation