Skip to main content
Log in

A Simulation Study on the Effect of Thoracic Conductivity Inhomogeneities on Sensitivity Distributions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A high-resolution 3D finite difference model of the electrical conductivity distribution in a human thorax based on a 43-slice MRI data set along with lead field theory was used to examine the effect of thoracic conductivity inhomogeneities on sensitivity distributions. The electrode configurations used in the present study were based on an eight-electrode array positioned evenly around the thoracic model at a level close the nipple line. Sensitivity distributions of each possible adjacent pair current excitation pattern for both the homogeneous thoracic model and the heterogeneous thoracic model were evaluated. The results show that thoracic inhomogeneities significantly perturb sensitivity distribution patterns. Although for a given thoracic geometry the electrode configuration gives the overall sensitivity distribution features, sharp large local changes occur near the boundaries between different tissues in the heterogeneous model. The results of sensitivity distributions of the heterogeneous thoracic model demonstrate the feasibility of impedance source localization. Selectivity can be used to as a guide to finding favorable electrode configuration for regional impedance monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Anderson F., Penney B., Patwardhen N., Wheeler H. (1980) Impedance plethysmography: the origin of electrical impedance changes measured in the human calf. Med. Biol. Eng. Comput. 18: 234–240

    Article  PubMed  Google Scholar 

  2. Atzler E., Lehman G. (1932) Über ein neues verfahren zur darstellung der herztätigkeit. Arbeitsphysiologie 5: 636–680

    Google Scholar 

  3. Belalcazar A., Patterson R. P. (2004) Improved lung edema monitoring with coronary vein pacing leads: a simulation study. Physiol. Meas. 25: 475–487

    Article  PubMed  Google Scholar 

  4. Bernstein D. P. (1986) A new stroke volume equation for thoracic electrical bioimpedance – theory and rationale. Crit. Care Med. 14: 904–909

    Article  PubMed  CAS  Google Scholar 

  5. Brown B. H., Barber D. C., Seagar A. D. (1985) Applied potential tomography: possible clinical application. Clin. Phys. Physiol. Meas. 6: 109–121

    Article  PubMed  CAS  Google Scholar 

  6. Gabriel S., Lau R. W., Gabriel C. (1996) The dielectric properties of biological tissue: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41: 2251–2269

    Article  PubMed  CAS  Google Scholar 

  7. Geddes A. L., Baker E. L. (1967) The specific resistance of biological material – a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5: 271–293

    Article  PubMed  CAS  Google Scholar 

  8. Geselowitz D. (1971) An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. 18: 38–41

    PubMed  CAS  Google Scholar 

  9. Kauppinen P. K., Hyttinen J. A., Malmivuo J. A. (1998) Sensitivity distribution of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann. Biomed. Eng. 26: 694–702

    Article  PubMed  CAS  Google Scholar 

  10. Kauppinen P. K., Hyttinen J. A., Malmivuo J. A. (2005) Sensitivity distribution simulation of impedance tomography electrode combination. IJBEM 7: 344–347

    Google Scholar 

  11. Kauppinen P. K., Koobi T., Kaukinen S., Hyttinen J. A. (1999) Application of computer modeling and lead field theory in developing multiple aimed impedance cardiography measurements. J. Med. Eng. Technol. 23: 169–177

    Article  PubMed  CAS  Google Scholar 

  12. Kubicek W. G. (1989) On the source of peak first time derivative (dZ/dt) during impedance cardiography. Ann. Biomed. Eng. 17: 459–462

    Article  PubMed  CAS  Google Scholar 

  13. Kubicek W. G., Karnegis J. N., Patterson R. P., Witsoe D. A., Mattson R. H. (1966) Development and evaluation of an impedance cardiac output system. Aerosp. Med. 37: 1208–1212

    PubMed  CAS  Google Scholar 

  14. Lehr J. (1972) A vector derivation useful in impedance plethysmographic field calculations. IEEE Trans. Biomed. Eng. BME-19(2):156–157

    Article  Google Scholar 

  15. Malmivuo J. A., Plonsey R. (1995) Bioelectromagnetism: principles and application of bioelectrica and biomagnetic fields. New York: Oxford University Press pp 405–407

    Google Scholar 

  16. Nyboer J., Bango S., Barnett A., Halsey R. H. (1940) Radiocardiograms – the electrical impedance changes of the heart in relation to electrocardiograms and heart sounds. J. Clin. Invest. 19: 733

    Google Scholar 

  17. Patterson, R. P., W. G. Kubicek, E. Kinnen, D. A. Witsoe, and G. Noren. Development of an electrical impedance plethysmography system to monitor cardiac output. In: Proceedings of the 1st Annual Rocky Mt. Bioengineering Symposium, 1964, pp. 56–71

  18. Patterson R. P., Wang L., Raza B., Wood K. (1990) Mapping the cardiogenic impedance signal on the thoracic surface. Med. Biol. Eng. Comput. 23: 212–216

    Article  Google Scholar 

  19. Sakamoto K., Muto K., Kanai H., Izuka M. (1979) Problems of impedance cardiography. Med. Biol. Eng. Comput. 17: 697–709

    Article  PubMed  CAS  Google Scholar 

  20. Salazar Y., Bragos R., Casas O., Cinca J., Rosell J. (2004) Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium. IEEE Trans. Biomed. Eng. 51(8):1421–1427

    Article  PubMed  Google Scholar 

  21. Sramek, B. B. Noninvasive technique for measurement of cardiac output by means of electrical impedance. In: Proceedings of the 5th International Conference on Electrical Bioimpedance, Tokyo, Japan, 1981, pp. 35–39

  22. Tishcenko M. I., Smirno A. D., Danilov L. N., Aleksandrov A. L. (1973) Characteristics and clinical use of integral rheography – a new method of measuring the stroke volume. Kardiologiya 13: 54–62

    Google Scholar 

  23. Van De Water J. M., Mount B. E., Barela J. R. (1973) Monitoring the chest with impedance. Chest 64: 597–603

    Article  PubMed  Google Scholar 

  24. Wang L., Patterson R. P. (1995) Multiple sources of impedance cardiogram based on 3D finite difference human thorax models. IEEE Trans. Biomed. Eng. 42: 141–148

    Article  PubMed  CAS  Google Scholar 

  25. Wilson J., Milnes P., Waterworth R., Smallwood H., Brown H. (2001) Mk3.5: a modular, multi-frequency successor to the Mk3aEIS/EIT system. Physiol. Meas. 22(1):49–54

    Article  PubMed  CAS  Google Scholar 

  26. Witsoe A. D., Kinnen E. (1967) Electrical resistivity of lung at 100 kHz. Med. Biol. Eng. 5: 239–248

    Article  PubMed  CAS  Google Scholar 

  27. Wtorek J. (2000) Relations between components of impedance cardiogram analyzed by means of finite element model and sensitivity theorem. Ann. Biomed. Eng. 28: 1352–1361

    Article  PubMed  CAS  Google Scholar 

  28. Wtorek J., Polinski A. (1995) Examination of impedance cardiography properties – FEM model studies. Biomed. Sci. Instrum. 31: 77–82

    PubMed  CAS  Google Scholar 

  29. Yang F., Patterson R. P. (2007) The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model. Physiol. Meas. 28:S153–S161

    Article  PubMed  Google Scholar 

  30. Zhang E., Shao S., Webster J. (1984) Impedance of skeletal muscle from 1Hz to 1MHz. IEEE Trans. Biomed. Eng. BME-31(6): 477–481

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Minnesota Supercomputing Institute for the computation resources. This study was supported in part by a gift from Earl Bakken, founder of Medtronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Patterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Patterson, R. A Simulation Study on the Effect of Thoracic Conductivity Inhomogeneities on Sensitivity Distributions. Ann Biomed Eng 36, 762–768 (2008). https://doi.org/10.1007/s10439-008-9469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9469-0

Keywords

Navigation