Skip to main content
Log in

CFD Simulation of Aerosol Deposition in an Anatomically Based Human Large–Medium Airway Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantitative data on aerosol deposition in the human respiratory tract are useful for understanding the causes of certain lung diseases and for designing efficient drug delivery systems via inhalation. In this study, aerosol deposition in a 3D anatomically based human large–medium airway model was simulated using computational fluid dynamics (CFD). The model extended from mouth to generation 10 and included two-thirds of the airways obtained by multi-detector row computed tomography (MDCT) imaging on normal healthy human subjects. Steady oral inhalation (15, 30, and 60 L/min) and aerosol (1–30 micrometer) deposition were computed by CFD using the realizable k–epsilon turbulence model. Based on the mean turbulence flow field, the computed extrathoracic deposition, ratio of left to right lung deposition, and deposition efficiency at each generation compared favorably with existing in vivo and in vitro experiments. The significant deposition in the large–medium airway model showed that the total tracheobronchial deposition is dominated by the large–medium airways for micrometer-sized aerosol particles. These quantitative data and the methods developed in this study provided valuable means toward subject-specific modeling of aerosol deposition in the human lung based on realistic lung geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anjilvel S., B. Asgharian 1995 A multiple-path model of particle deposition in the rat lung. Fundam. Appl. Toxicol. 28, 41–50. doi:10.1006/faat.1995.1144

    Article  PubMed  CAS  Google Scholar 

  2. Asgharian B., W. Hofman, R. Bergmann 2001 Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34, 332–339

    CAS  Google Scholar 

  3. Asgharian B., O. T. Price, W. Hofmann 2006 Prediction of particle deposition in the human lung using realistic models of lung ventilation. J. Aerosol Sci. 37, 1209–1221. doi:10.1016/j.jaerosci.2006.01.002

    Article  CAS  Google Scholar 

  4. Balashazy I., W. Hofmann 1995 Deposition of aerosols in asymmetric airway bifurcations. J. Aerosol Sci. 26, 273–292. doi:10.1016/0021-8502(94)00106-9

    Article  CAS  Google Scholar 

  5. Bennett W. D., G. Scheuch, K. L. Zeman, J. S. Brown, C. Kim, J. Heyder, W. Stahlhofen 1998 Bronchial airway deposition and retention of particles in inhaled boluses: effect of anatomic dead space. J. Appl. Physiol. 85, 685–694

    PubMed  CAS  Google Scholar 

  6. Bennett W. D., G. Scheuch, K. L. Zeman, J. S. Brown, C. Kim, J. Heyder, W. Stahlhofen 1999 Regional deposition and retention of particles in shallow, inhaled boluses: effect of lung volume. J. Appl. Physiol. 86, 168–173. doi:10.1063/1.370713

    Article  PubMed  CAS  Google Scholar 

  7. Borgstrom L., B. Olsson, L. Thorsson 2006 Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J. Aerosol Med. 19, 473–483. doi:10.1089/jam.2006.19.473

    Article  PubMed  Google Scholar 

  8. Brancatisano T., P. W. Collett, L. A. Engel 1983 Respiratory movements of the vocal cords. J. Appl. Physiol. 54, 1269–1276

    PubMed  CAS  Google Scholar 

  9. Chan T. L., M. Lippmann 1980 Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41, 399–409

    PubMed  CAS  Google Scholar 

  10. Chang Y. H., C. P. Yu 1999 A model of ventilation distribution in the human lung. Aerosol Sci. Technol. 30, 309–319. doi:10.1080/027868299304660

    Article  PubMed  CAS  Google Scholar 

  11. Cheng Y. S., Y. Zhou, B. T. Chen 1999 Particle deposition in a cast of human oral airways. Aerosol Sci. Technol. 31, 286–300. doi:10.1080/027868299304165

    Article  CAS  Google Scholar 

  12. Darquenne C., G. K. Prisk (2004) Aerosol deposition in the human respiratory tract breathing air and 80:20 heliox. J. Aerosol Med. 17, 278–285

    Article  PubMed  CAS  Google Scholar 

  13. Darquenne C., M. Paiva, J. B. West, G. K. Prisk 1997 Effect of microgravity and hypergravity on deposition of 0.5- to 3-μm-diameter aerosol in the human lung. J. Appl. Physiol. 83, 2029–2036

    PubMed  CAS  Google Scholar 

  14. Dellaca R. L., L. D. Black, H. Atileh, A. Pedotti, K. R. Lutchen 2004 Effects of posture and bronchoconstriction on low-frequency input and transfer impedances in humans. J. Appl. Physiol. 97, 109–118. doi:10.1152/japplphysiol.00721.2003

    Article  PubMed  Google Scholar 

  15. Dominici F., R. D. Peng, M. L. Bell, L. Pham, A. McDermott, S. L. Zeger, J. M. Samet 2006 Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127–1134. doi:10.1001/jama.295.10.1127

    Article  PubMed  CAS  Google Scholar 

  16. Fleming J. S., M. Nassim, A. H. Hashish, A. G. Bailey, J. Conway, S. Holgate, P. Halson, E. Moore, T. B. Martonen 1995 Description of pulmonary deposition of radiolabeled aerosol by airway generation using a conceptual 3-dimensional model of lung morphology. J. Aerosol Med. 8, 341–356

    Google Scholar 

  17. Fluent. FLUENT 6.2 User’s Guide. Lebanon, New Hampshire: Fluent Inc., 2005

  18. Gauderman W. J., E. Avol, F. Gilliland, H. Vora, D. Thomas, K. Berhane, R. McConnell, N. Kuenzli, F. Lurmann, E. Rappaport, H. Margolis, D. Bates, J. Peters 2004 The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 351, 1057–1067. doi:10.1056/NEJMoa040610

    Article  PubMed  CAS  Google Scholar 

  19. Grgic B., W. H. Finlay, P. K. P. Burnell, A. F. Heenan 2004 In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J. Aerosol Sci. 35, 1025–1040. doi:10.1016/j.jaerosci.2004.03.003

    Article  CAS  Google Scholar 

  20. Gurman J. L., M. Lippmann, R. B. Schlesinger 1984 Particle deposition in replicate casts of the human upper tracheobronchial tree under constant and cyclic inspiratory flow 1 experimental. Aerosol Sci. Technol. 3, 245–252. doi:10.1080/02786828408959012

    Article  Google Scholar 

  21. Gurman J. L., R. B. Schlesinger, M. Lippmann 1980 A variable-opening mechanical larynx for use in aerosol deposition studies. Am. Ind. Hyg. Assoc. J. 41, 678–680

    PubMed  CAS  Google Scholar 

  22. Hashish A. H., J. S. Fleming, J. Conway, P. Halson, E. Moore, T. J. Williams, A. G. Bailey, M. Nassim, S. T. Holgate 1998 Lung deposition of particles by airway generation in healthy subjects: three-dimensional radionuclide imaging and numerical model prediction. J. Aerosol Sci. 29, 205–215. doi:10.1016/S0021-8502(97)00023-2

    Article  CAS  Google Scholar 

  23. Heyder J., L. Armbruster, J. Gebhart, E. Grein, W. Stahlhofen 1975 Total deposition of aerosol particles in the human respiratory tract for nose and mouth breathing. J. Aerosol Sci. 6, 311–328. doi:10.1016/0021-8502(75)90020-8

    Article  Google Scholar 

  24. Heyder J., J. Gebhart, G. Heigwer, C. Roth, W. Stahlhofen 1973 Experimental studies of the total deposition of aerosol particles in the human respiratory tract. J. Aerosol Sci. 4, 191–208. doi:10.1016/0021-8502(73)90002-5

    Article  CAS  Google Scholar 

  25. Heyder J., J. Gebhart, G. Rudolf, C. F. Schiller, W. Stahlhofen 1986 Deposition of particles in the human respiratory tract in the size range 0.0005–15 μm. J. Aerosol Sci. 17, 811–825. doi:10.1016/0021-8502(86)90035-2

    Article  Google Scholar 

  26. Horsfield K., G. Dart, D. E. Olson, G. F. Filley, G. Cumming 1971 Models of the human bronchial tree. J. Appl. Physiol. 31, 207–217

    PubMed  CAS  Google Scholar 

  27. Kaczka D. W., E. P. Ingenito, E. Israel, K. R. Lutchen 1999 Airway and lung tissue mechanics in asthma. Effects of albuterol. Am. J. Respir. Crit. Care Med. 159, 169–178

    PubMed  CAS  Google Scholar 

  28. Kim C. S., S. C. Hu 1998 Regional deposition of inhaled particles in human lungs: comparison between men and women. J. Appl. Physiol. 84, 1834–1844. doi:10.1063/1.368615

    Article  PubMed  CAS  Google Scholar 

  29. Kim C. S., S. C. Hu 2006 Total respiratory tract deposition of fine micrometer-sized particles in healthy adults: empirical equations for sex and breathing pattern. J. Appl. Physiol. 101, 401–412. doi:10.1152/japplphysiol.00026.2006

    Article  PubMed  Google Scholar 

  30. Kim C. S., S. C. Hu, P. DeWitt, T. R. Gerrity 1996 Assessment of regional deposition of inhaled particles in human lungs by serial bolus delivery method. J. Appl. Physiol. 81, 2203–2213

    PubMed  CAS  Google Scholar 

  31. Kleinstreuer C., Z. Zhang 2003 Laminar-to-turbulent fluid-particle flows in a human airway model. Int. J. Multiphase Flow 29, 271–289. doi:10.1016/S0301-9322(02)00131-3

    Article  CAS  Google Scholar 

  32. Lin C. L., M. H. Tawhai, G. McLennan, E. A. Hoffman 2007 Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157, 295–309. doi:10.1016/j.resp.2007.02.006

    Article  PubMed  Google Scholar 

  33. Liu B. Y. H., J. K. Agarwal 1974 Experimental observation of aerosol deposition in turbulent flow. J. Aerosol Sci. 5, 145–155. doi:10.1016/0021-8502(74)90046-9

    Article  CAS  Google Scholar 

  34. Liu Y., R. M. So, C. H. Zhang 2002 Modeling the bifurcating flow in a human lung airway. J. Biomech. 35, 465–473. doi:10.1016/S0021-9290(01)00225-1

    Article  PubMed  CAS  Google Scholar 

  35. Liu Y., R. M. So, C. H. Zhang 2003 Modeling the bifurcating flow in an asymmetric human lung airway. J. Biomech. 36, 951–959. doi:10.1016/S0021-9290(03)00064-2

    Article  PubMed  CAS  Google Scholar 

  36. Ma B., K. R. Lutchen 2006 An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng. 34, 1691–1704. doi:10.1007/s10439-006-9184-7

    Article  PubMed  Google Scholar 

  37. Martonen T. B., Y. Yang, D. Hwang, J. S. Fleming 1995 Computer model of human lung morphology to complement SPECT analyses. Int. J. Biomed. Comput. 40, 5–16. doi:10.1016/0020-7101(95)01106-O

    Article  PubMed  CAS  Google Scholar 

  38. Matida E. A., W. H. Finlay, M. Breuer, C. F. Lange 2006 Improving prediction of aerosol deposition in an idealized mouth using large-Eddy simulation. J. Aerosol Med. 19, 290–300. doi:10.1089/jam.2006.19.290

    Article  PubMed  CAS  Google Scholar 

  39. Matida E. A., W. H. Finlay, C. F. Lange, B. Grgic 2004 Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J. Aerosol Sci. 35, 1–19. doi:10.1016/S0021-8502(03)00381-1

    Article  CAS  Google Scholar 

  40. McCusker C., M. Chicoine, Q. Hamid, B. Mazer 2002 Site-specific sensitization in a murine model of allergic rhinitis: role of the upper airway in lower airways disease. J. Allergy Clin. Immunol. 110, 891–898. doi:10.1067/mai.2002.130048

    Article  PubMed  Google Scholar 

  41. Morsi S. A., A. J. Alexander 1972 An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208. doi:10.1017/S0022112072001806

    Article  Google Scholar 

  42. Moss O. R., M. J. Oldham 2006 Dosimetry counts: molecular hypersensitivity may not drive pulmonary hyperresponsiveness. J. Aerosol Med. 19, 555–564. doi:10.1089/jam.2006.19.555

    Article  PubMed  CAS  Google Scholar 

  43. Nowak N., P. P. Kakade, A. V. Annapragada 2003 Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31, 374–390. doi:10.1114/1.1560632

    Article  PubMed  Google Scholar 

  44. Parker S., T. Foat, S. Preston 2008 Towards quantitative prediction of aerosol deposition from turbulent flows. J. Aerosol Sci. 39, 99–112. doi:10.1016/j.jaerosci.2007.10.002

    Article  CAS  Google Scholar 

  45. Samet J. M. 2004 Adverse effects of smoke exposure on the upper airway. Tob. Control 13(Suppl 1), i57–i60. doi:10.1136/tc.2003.005454

    Article  PubMed  Google Scholar 

  46. Scheuch G., M. J. Kohlhaeufl, P. Brand, R. Siekmeier 2006 Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv. Drug Deliv. Rev. 58, 996–1008. doi:10.1016/j.addr.2006.07.009

    Article  PubMed  CAS  Google Scholar 

  47. Schlesinger R. B., D. E. Bohning, T. L. Chan, M. Lippmann 1977 Particle deposition in a hollow cast of the human tracheobronchial tree. J. Aerosol Sci. 8, 429–445. doi:10.1016/0021-8502(77)90036-2

    Article  Google Scholar 

  48. Schlesinger R. B., J. L. Gurman, M. Lippmann 1982 Particle deposition within bronchial airways: comparisons using constant and cyclic inspiratory flows. Ann. Occup. Hyg. 26, 47–64. doi:10.1093/annhyg/26.1.47

    Article  PubMed  CAS  Google Scholar 

  49. Schlesinger R. B., M. Lippmann 1976 Particle deposition in the trachea: in vivo and in hollow casts. Thorax 31, 678–684

    Article  PubMed  CAS  Google Scholar 

  50. Shih T. H., W. W. Liou, A. Shabbir, Z. G. Yang, J. Zhu 1995 A new kappa-epsilon eddy viscosity model for high Reynolds-number turbulent flows. Comput. Fluids 24, 227–238. doi:10.1016/0045-7930(94)00032-T

    Article  Google Scholar 

  51. Stapleton K. W., E. Guentsch, M. K. Hoskinson, W. H. Finlay 2000 On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. J. Aerosol Sci. 31, 739–749. doi:10.1016/S0021-8502(99)00547-9

    Article  CAS  Google Scholar 

  52. Tgavalekos N. T., G. Musch, R. S. Harris, M. F. Vidal Melo, T. Winkler, T. Schroeder, R. Callahan, K. R. Lutchen, J. G. Venegas 2007 Relationship between airway narrowing, patchy ventilation and lung mechanics in asthmatics. Eur. Respir. J. 29, 1174–1181. doi:10.1183/09031936.00113606

    Article  PubMed  CAS  Google Scholar 

  53. Tian L., G. Ahmadi 2007 Particle deposition in turbulent duct flows—comparisons of different model predictions. J. Aerosol Sci. 38, 377–397. doi:10.1016/j.jaerosci.2006.12.003

    Article  CAS  Google Scholar 

  54. Tossici-Bolt L., J. S. Fleming, J. H. Conway, T. B. Martonen 2006 Analytical technique to recover the third dimension in planar imaging of inhaled aerosols: (1) impact on spatial quantification. J. Aerosol Med. 19, 565–579. doi:10.1089/jam.2006.19.565

    Article  PubMed  Google Scholar 

  55. Usmani O. S., M. F. Biddiscombe, P. J. Barnes 2005 Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am. J. Respir. Crit. Care Med. 172, 1497–1504. doi:10.1164/rccm.200410-1414OC

    Article  PubMed  Google Scholar 

  56. Verbanck S., M. Paiva 2000 Implications of left-to-right lung ventilation heterogeneity. J. Appl. Physiol. 88, 1150–1151

    PubMed  CAS  Google Scholar 

  57. Wolfstein M. 1969 The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. Int. J. Heat Mass Trans. 12, 301–318. doi:10.1016/0017-9310(69)90012-X

    Article  Google Scholar 

  58. Xi J., P. W. Longest 2007 Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35, 560–581. doi:10.1007/s10439-006-9245-y

    Article  PubMed  Google Scholar 

  59. Yeh H. C., G. M. Schum 1980 Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 42, 461–480

    PubMed  CAS  Google Scholar 

  60. Yu C. P., C. K. Diu 1982 A comparative study of aerosol deposition in different lung models. Am. Ind. Hyg. Assoc. J. 43, 54–65. doi:10.1080/15298668291410891

    PubMed  CAS  Google Scholar 

  61. Zhou Y., Y. S. Cheng 2005 Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci. Technol. 39, 492–500. doi:10.1080/027868291001385

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a grant from NHLBI RO1 HL076778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Lutchen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Lutchen, K.R. CFD Simulation of Aerosol Deposition in an Anatomically Based Human Large–Medium Airway Model. Ann Biomed Eng 37, 271–285 (2009). https://doi.org/10.1007/s10439-008-9620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9620-y

Keywords

Navigation