Skip to main content
Log in

Homeostasis of Brain Dynamics in Epilepsy: A Feedback Control Systems Perspective of Seizures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In an effort to understand basic functional mechanisms that can produce epileptic seizures, some key features are introduced in coupled lumped-parameter neural population models that produce “seizure”-like events and dynamics similar to the ones during the route of the epileptic brain towards seizures. In these models, modified from existing ones in the literature, internal feedback mechanisms are incorporated to maintain the normal low level of synchronous behavior in the presence of coupling variations. While the internal feedback is developed using basic feedback systems principles, it is also functionally equivalent to actual neurophysiological mechanisms such as homeostasis that act to maintain normal activity in neural systems that are subject to extrinsic and intrinsic perturbations. Here it is hypothesized that a plausible cause of seizures is a pathology in the internal feedback action; normal internal feedback quickly regulates an abnormally high coupling between the neural populations, whereas pathological internal feedback can lead to “seizure”-like high amplitude oscillations. Several external seizure-control paradigms, that act to achieve the operational objective of maintaining normal levels of synchronous behavior, are also developed and tested in this paper. In particular, closed-loop “modulating” control with predefined stimuli, and closed-loop feedback decoupling control are considered. Among these, feedback decoupling control is the consistently successful and robust seizure-control strategy. The proposed model and remedies are consistent with a variety of recent observations in the human and animal epileptic brain, and with theories from nonlinear systems, adaptive systems, optimization, and neurophysiology. The results from the analysis of these models have two key implications, namely, developing a basic theory for epilepsy and other brain disorders, and the development of a robust seizure-control device through electrical stimulation and/or drug intervention modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Notes

  1. Based on the terminology that two coupled systems of the form \(\dot{x}_1=f_1(x_1)+\epsilon (x_2-x_1)\) and \(\dot{x}_2=f_2(x_2)+\epsilon (x_1-x_2)\) are diffusively coupled, we coin the term “quasi-diffusive” since the control signal in this context is essentially of the form −\(\epsilon\) x 2.

References

  1. L.F. Abbott and LeMasson G. (1993) Analysis of neuron models with dynamically regulated conductances. Neural Computation 5(6):823–842

    Article  Google Scholar 

  2. L.F. Abbott and S.B. Nelson. Synaptic plasticity: taming the beast. Nature Neuroscience, 3(2000):1178–1183, 2000

    Article  PubMed  CAS  Google Scholar 

  3. L. F. Abbott, J. A. Varela, K. Sen, and S.B. Nelson. Synaptic Depression and Cortical Gain Control. Science, 275(5297):221–224, 1997

    Article  Google Scholar 

  4. B.D.O Anderson. Adaptive systems, lack of persistency of excitation and bursting phenomenon. Automatica, 21:247–258, 1985

    Article  Google Scholar 

  5. Astrom, K. J., and L. Rundqwist. Integrator windup and how to avoid it. In: Proceedings of the 1989 American Control Conference, 21–23 June 1989, pp. 1693–1698.

  6. Breakspear M., Terry J. R. (2002) Nonlinear interdependence in neural systems: Motivation, theory, and relevance. International Journal of Neuroscience 112:1263–1284

    Article  PubMed  CAS  Google Scholar 

  7. P.Brown. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18(4):357–363, 2003

    Article  PubMed  Google Scholar 

  8. J.M. Carlson and J.Doyle. Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E, 60(2 Pt A):1412–1427, 1999

    Article  CAS  Google Scholar 

  9. Chakravarthy, N. A feedback systems perspective for modeling and controlling epileptic seizures. PhD thesis, Arizona State University, 2007.

  10. N. Chakravarthy, S. Sabesan, L.D. Iasemidis, and K. Tsakalis. Controlling synchronization in a neuron-level population model. International Journal of Neural Systems, 17(2):123–138, 2007

    Article  PubMed  Google Scholar 

  11. D. Chawla, E. D. Lumer, and K. J. Friston. The relationship between synchronization among neuronal populations and their mean activity level. Neural Computation, 11(6):1389–1411, 1999

    Article  PubMed  CAS  Google Scholar 

  12. S.A. Chkhenkeli, M. Sramka, G.S. Lortkipanidze, T.N. Rakviashvili, E.S. Bregvadze, G.E. Magalashvili, T.S. Gagoshidze, and I.S. Chkhenkeli. Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clinical Neurology and Neurosurgery, 106(4):318–329, 2004

    Article  PubMed  Google Scholar 

  13. H. Cline. Synaptogenesis: A Balancing Act between Excitation and Inhibition. Current Biology, 15(6):203–205, 2005

    Article  Google Scholar 

  14. S.J. Czuczwar and P.N. Patsalos. The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs, 15(5):339–350, 2001

    Article  PubMed  CAS  Google Scholar 

  15. O. David and K.J. Friston. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20(3):1743–1755, 2003

    Article  PubMed  Google Scholar 

  16. G.W. Davis and I.Bezprozvanny. Maintaining the stability of neural function: A homeostatic hypothesis. Annual Review of Physiology, 63(1):847–869, 2001

    Article  PubMed  CAS  Google Scholar 

  17. N.S. Desai, R.H. Cudmore, S.B. Nelson, and G.G. Turrigiano. Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience, 5(8):783–89, 2002

    Article  PubMed  CAS  Google Scholar 

  18. Niraj S. Desai, Lana C. Rutherford, and Gina G. Turrigiano. BDNF Regulates the Intrinsic Excitability of Cortical Neurons. Learning and Memory, 6(3):284–291, 1999

    PubMed  CAS  Google Scholar 

  19. N.S. Desai, L.C. Rutherford, and G.G. Turrigiano. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2:515–520, 1999

    Article  PubMed  CAS  Google Scholar 

  20. Destexhe, A., and T. J. Sejnowski. Thalamocortical Assemblies: How Ion Channels, Single Neurons, and Large-Scale Networks Organize Sleep Oscillations. Oxford University Press, 2001.

  21. J. Doyle and J.M. Carlson. Power laws, highly optimized tolerance, and generalized source coding. Physical Review Letters, 84(24):5656–5659, 2000

    Article  PubMed  CAS  Google Scholar 

  22. M. Esclapez, J.C. Hirsch, R.Khazipov, Y.Ben-Ari, and C.Bernard. Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Proceedings of the National Academy of Science USA, 94(22):12151–12156, 1997

    Article  PubMed  CAS  Google Scholar 

  23. R.S. Fisher, G.L. Krauss, E. Ramsay, K. Laxer, and J. Gates. Assessment of vagus nerve stimulation for epilepsy: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology, 49(1):293–297, 1997

    PubMed  CAS  Google Scholar 

  24. M. Galarreta and S. Hestrin. Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neuroscience, 1:587–594, 1998

    Article  PubMed  CAS  Google Scholar 

  25. J. Golowasch, M. Casey, L.F. Abbott, and E. Marder. Network stability from activity-dependent regulation of neuronal conductances. Neural Computation, 11(5):1079–1096, 1999

    Article  PubMed  CAS  Google Scholar 

  26. E. Grassi, K. S. Tsakalis, S. Dash, S. V. Gaikwad, W. MacArthur, and G. Stein. Integrated system identification and PID controller tuning by frequency loop-shaping. IEEE Transactions on Control Systems Technology, 9(2):285–294, 2001

    Article  Google Scholar 

  27. F. Grimbert and O. Faugeras. Bifurcation Analysis of Jansen’s Neural Mass Model. Neural Computation, 18(12):3052–3068, 2006

    Article  PubMed  Google Scholar 

  28. J. Gross, F.Schmitz, I.Schnitzler, K.Kessler, K. Shapiro, B. Hommel, and A.Schnitzler. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proceedings of the National Academy of Sciences, 101(35):13050–13055, 2004

    Article  PubMed  CAS  Google Scholar 

  29. A. R. Houweling, M. Bazhenov, I. Timofeev, M. Steriade, and T. J. Sejnowski. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cerebral Cortex, 15(6):834–845, 2005

    Article  PubMed  Google Scholar 

  30. D. Hsu and J. M. Beggs. Neuronal avalanches and criticality: A dynamical model for homeostasis. Neurocomputing, 69:1134–1136, 2006

    Article  Google Scholar 

  31. W. D. Hutchison, J. O. Dostrovsky, J. R. Walters, R. Courtemanche, T. Boraud, J. Goldberg, and P. Brown. Neuronal oscillations in the basal ganglia and movement disorders: Evidence from whole animal and human recordings. Journal of Neuroscience, 24(42):9240–9243, 2004

    Article  PubMed  CAS  Google Scholar 

  32. L. D. Iasemidis. Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50(5):549–558, 2003

    Article  PubMed  Google Scholar 

  33. L. D. Iasemidis, P. M. Pardalos, D. S. Shiau, W. Chaovalitwongse, K. Narayanan, A. Prasad, K. Tsakalis, P. R. Carney, and J. C. Sackellares. Long term prospective on-line real-time seizure prediction. Journal of Clinical Neurophysiology, 116:532–544, 2005

    Article  CAS  Google Scholar 

  34. Iasemidis, L. D., A. Prasad, J. C. Sackellares, P. M. Pardalos, and D. S. Shiau. On the prediction of seizures, hysteresis and resetting of the epileptic brain: insights from models of coupled chaotic oscillators. In: Order and Chaos (Proc. of the 14th Summer School on Nonlinear Dynamics: Chaos and Complexity, Patras, Greece, 2001), vol. 8, edited by T. Bountis and S. Pneumatikos. Thessaloniki, Greece: Publishing House of K. Sfakianakis, 1991, pp. 283–305.

  35. Iasemidis, L. D., and J. C. Sackellares. The temporal evolution of the largest lyapunov exponent on the human epileptic cortex. In: Measuring Chaos in the Human Brain, edited by D.W. Duke and W.S. Pritchard. World Scientific, Singapore, 2001, pages 49–82.

    Google Scholar 

  36. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5):616–627, 2003

    Article  PubMed  Google Scholar 

  37. L. D. Iasemidis, D. S. Shiau, J. C. Sackellares, P. M. Pardalos, and A. Prasad. Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Transactions on Biomedical Engineering, 51(3):493–506, 2004

    Article  PubMed  Google Scholar 

  38. L. D. Iasemidis, K. Tsakalis, J. C. Sackellares, and P. M. Pardalos. Comment on ‘Inability of Lyapunov exponents to predict epileptic seizures’. Physical Review Letters, 94:019801, 2005

    Article  PubMed  Google Scholar 

  39. B. H. Jansen and V. G. Rit. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73(4):357–366, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. D. Johnston and T. H. Brown. Control theory applied to neural networks illuminates synaptic basis of interictal epileptiform activity. Advances in Neurology, 44:263–74, 1986

    PubMed  CAS  Google Scholar 

  41. E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science. McGraw-Hill, New York, 2000

    Google Scholar 

  42. J. F. Kerrigan, B. Litt, R. S. Fisher, S. Cranstoun, J. A. French, D. E. Blum, M. Dichter, A. Shetter, G. Baltuch, J. Jaggi, S. Krone, M. Brodie, M. Rise, and N. Graves. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia, 45(4):346–354, 2004

    Article  PubMed  Google Scholar 

  43. G. LeMasson, E. Marder, and L. F. Abbott. Activity-dependent regulation of conductances in model neurons. Science, 259(5103):1915–1917, 1993

    Article  PubMed  CAS  Google Scholar 

  44. D. T. J. Liley, P. J. Cadusch, and M. P. Dafilis. A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13(1):67–113, 2002

    Article  Google Scholar 

  45. Z. Liu, J. Golowasch, E. Marder, and L. F. Abbott. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Journal of Neuroscience, 18(7):2309–2320, 1998

    PubMed  CAS  Google Scholar 

  46. E. Marder, and A. A. Prinz. Modeling stability in neuron and network function: the role of activity in homeostasis. BioEssays, 24(12):1145–1154, 2002

    Article  PubMed  CAS  Google Scholar 

  47. E. Marder, and V. Thirumalai. Cellular, synaptic and network effects of neuromodulation. Neural Networks, 15(4):479–493, 2002

    Article  PubMed  Google Scholar 

  48. H. Markram and M. Tsodyks. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature, 382(6594):807–810, 1996

    Article  PubMed  CAS  Google Scholar 

  49. D. A. McCormick and D. Contreras. On the cellular and network bases of epileptic seizures. Annual Review of Physiology, 63:815–846, 2001.

    Article  CAS  Google Scholar 

  50. Milhorn, H. T. The Application of Control Theory to Physiological Systems. Saunders, 1966.

  51. K. D. Miller. Synaptic economics: Competition and cooperation in synaptic plasticity. Neuron, 17:371–374, 1996

    Article  PubMed  CAS  Google Scholar 

  52. K. D. Miller and D. J. C. MacKay. The role of constraints in Hebbian learning. Neural Computation, 6:100–124, 1994

    Article  Google Scholar 

  53. V. B. Mountcastle. The columnar organization of the neocortex. Brain, 120(4):701–722, 1997

    Article  PubMed  Google Scholar 

  54. S. B. Nelson and G. G. Turrigiano. Synaptic depression: a key player in the cortical balancing act. Nature Neuroscience, 1:539–541, 1998

    Article  PubMed  CAS  Google Scholar 

  55. R.J. O’Brien, S. Kamboj, M.D. Ehlers, K.R. Rosen, G.D. Fischbach, and R.L. Huganir. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron, 21(5):1067–78, 1998

    Article  PubMed  CAS  Google Scholar 

  56. Ogata, K. Modern Control Engineering. Prentice Hall, 2006.

  57. L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, and J. F. Heagy. Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos, 7(4):520–543, 1997.

    Article  PubMed  CAS  Google Scholar 

  58. A. Renart, P. Song, and X.J. Wang. Robust Spatial Working Memory through Homeostatic Synaptic Scaling in Heterogeneous Cortical Networks. Neuron, 38(3):473–485, 2003

    Article  PubMed  CAS  Google Scholar 

  59. L. C. Rutherford, S. B. Nelson, and G. G. Turrigiano. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron, 21(3):521–530, 1998

    Article  PubMed  CAS  Google Scholar 

  60. A. Schnitzler, and J. Gross. Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6:285–296, 2005

    Article  PubMed  CAS  Google Scholar 

  61. W. A. Sethares, C. R. Johnson Jr, and C. E. Rohrs. Bursting in adaptive hybrids. IEEE Transactions on Communications, C-35:791–799, 1989.

    Article  Google Scholar 

  62. M. Siegel, E. Marder, and L. F. Abbott. Activity-dependent current distributions in model neurons. Proceedings of the National Academy of Sciences, 91(24):11308–11312, 1994

    Article  PubMed  CAS  Google Scholar 

  63. S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3:919–926, 2000

    Article  PubMed  CAS  Google Scholar 

  64. C. Soto-Treviño, K.A. Thoroughman, E. Marder, and L.F. Abbott. Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nature Neuroscience, 4:297–303, 2001

    Article  PubMed  Google Scholar 

  65. H. Stoegbauer, L. Yang, P. Grassberger, R. G. Andrzejak, T. Kreuz, A. Kraskov, C. E. Elger, and K. Lehnertz. Lateralization of the focal hemisphere in mesial temporal lobe epilepsy using independent component analysis. Epilepsia, 43:51, 2002

    Article  Google Scholar 

  66. P. Suffczynski, S. Kalitzin, and F. H. L. Da Silva. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126(2):467–484, 2004

    Article  PubMed  CAS  Google Scholar 

  67. J. Tabak, W. Senn, M. J. O’Donovan, and J. Rinzel. Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. Journal of Neuroscience, 20(8):3041–3056, 2000

    PubMed  CAS  Google Scholar 

  68. I. Timofeev and M. Steriade. Neocortical seizures: initiation, development and cessation. Neuroscience, 123(2):299–336, 2004.

    Article  PubMed  CAS  Google Scholar 

  69. K. S. Tsakalis. Performance limitations of adaptive parameter estimation and system identification algorithms in the absence of excitation. Automatica, 32:549–560, 1996.

    Article  Google Scholar 

  70. K. S. Tsakalis. Bursting scenaria in adaptive algorithms: Performance limitations and some remedies. Kybernetika, 33(1):17–40, 1997

    Google Scholar 

  71. Tsakalis, K., N. Chakravarthy, and L. D. Iasemidis. Theoretical concepts of control with applications to epilepsy. In: 3rd European Medical and Biological Engineering Conference, IFMBE Proceedings, vol. 11, 2000.

  72. Tsakalis, K., N. Chakravarthy, and L. D. Iasemidis. Control of epileptic seizures: models of chaotic oscillator networks. In: 44th IEEE Conference on Decision and Control, 2001, pp. 2975–2981.

  73. Tsakalis, K., N. Chakravarthy, S. Sabesan, L. D. Iasemidis, and P. M. Pardalos. A feedback control systems view of epileptic seizures. Cybernetics and Systems Analysis, 42(4):483–495, 2001

    Article  Google Scholar 

  74. Tsakalis, K., and L. D. Iasemidis. Prediction and control of epileptic seizures. In: International Conference and Summer School Complexity in Science and Society European Advanced Studies Conference V, Patras and Ancient Olympia, Greece, July 2004, pp. 14–26.

  75. Tsakalis, Iasemidis. Control aspects of a theoretical model for epileptic seizures. International Journal of Bifurcation and Chaos, 16(7):2013–2027, 2003

    Article  Google Scholar 

  76. G.G. Turrigiano. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends in Neuroscience, 22(5):221–227, 1999

    Article  PubMed  CAS  Google Scholar 

  77. G. Turrigiano, P. F. Abbott, and E. Marder. Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264(5161):974–977, 1994.

    Article  PubMed  CAS  Google Scholar 

  78. G. G. Turrigiano, K. R. Leslie, N. S. Desai, L. C. Rutherford, and S. B. Nelson. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391(6670):892–896, 1998

    Article  PubMed  CAS  Google Scholar 

  79. G. G. Turrigiano and S. B. Nelson. Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron, 21(5):1067–1078, 1998

    Article  Google Scholar 

  80. G. G. Turrigiano and S. B. Nelson. Hebb and homeostasis in neuronal plasticity. Current Opinion in Neurobiology, 10(3):358–64, 2000

    Article  PubMed  CAS  Google Scholar 

  81. G. G. Turrigiano and S. B. Nelson. Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2):97–107, 2004

    Article  PubMed  CAS  Google Scholar 

  82. O. VanderStelt, A. Belger, and J. A. Lieberman. Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proceedings of the National Academy of Sciences, 101(51):17567–17568, 2004.

    Article  PubMed  Google Scholar 

  83. L. M. Ward. Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12):553–559, 2003

    Article  PubMed  Google Scholar 

  84. F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 83(4):367–378, 2000

    Article  PubMed  CAS  Google Scholar 

  85. J. Yamamoto, A. Ikeda, T. Satow, K. Takeshita, M. Takayama, M. Matsuhashi, R. Matsumoto, S. Ohara, N. Mikuni, J. Takahashi, S. Miyamoto, W. Taki, N. Hashimoto, J. C. Rothwell, , and H. Shibasaki. Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. Epilepsia, 43(5):491–495, 2002

    Article  PubMed  Google Scholar 

  86. W. Zhang and D. J. Linden. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nature Reviews Neuroscience, 4(11):885–900, 2003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the American Epilepsy Research Foundation and Ali Paris Fund for LKS Research and Education, and NSF Grant ECS-0601740. We would also like to acknowledge Prof. Piotr Suffczynski for providing the Simulink code for his thalamocortical model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Tsakalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarthy, N., Tsakalis, K., Sabesan, S. et al. Homeostasis of Brain Dynamics in Epilepsy: A Feedback Control Systems Perspective of Seizures. Ann Biomed Eng 37, 565–585 (2009). https://doi.org/10.1007/s10439-008-9625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9625-6

Keywords

Navigation