Skip to main content
Log in

The Role of Posture, Magnification, and Grip Force on Microscopic Accuracy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While tremor has been studied extensively, the investigations thus far do not give detailed information on how the accuracy necessary for micromanipulations is affected while performing tasks in microsurgery and the life sciences. This paper systematically studies the effects of visual feedback, posture and grip force on the trial error and tremor intensity of subjects holding a forceps-like object to perform a pointing task. Results indicate that: (i) Arm support improves accuracy in tasks requiring fine manipulation and reduces tremor intensity in the 2–8 Hz region, but hand support does not provide the same effect; hence freedom of wrist movement can be retained without a significant increase in trial error. (ii) Magnification of up to ×10 is critical to carry out accurate micromanipulations, but beyond that level, magnification is not the most important factor. (iii) While an appropriate grip force must be learned in order to grasp micro-objects, such as a needle, without damaging them, the level of grip force applied does not affect the endpoint accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ackland R. D. (1989). Practice Manual for Microvascular Surgery, 2nd edn. Baltimore: C.V. Mosby Co.

    Google Scholar 

  2. Balasubramanian, R., R. D. Howe, and Y. Matsuoka. Task performance is prioritized over energy reduction. IEEE Trans. Biomed. Eng., 2008. doi:10.1109/TBME.2008.2006683.

  3. Beuter, A., H. Haverkamp, L. Glass, and L. Carriere. Effect of manipulating visual feedback parameters on eye and finger movements. Int. J. Neurosci. 83: 281-294, 1995.

    PubMed  CAS  Google Scholar 

  4. Burdet, E., R. Osu, D. W. Franklin, T. Milner, and M. Kawato. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414: 446-449, 2001. doi:10.1038/35106566.

    Article  PubMed  CAS  Google Scholar 

  5. Cesari, P and K. M. Newell. The scaling of human grip configurations. J. Exp. Psychol. Hum. 25:927-935, 1999. doi:10.1037/0096-1523.25.4.927.

    Article  CAS  Google Scholar 

  6. Cleeves, L., L. J. Findley, and M. Gresty, Assessment of rest tremor in Parkinson’s disease. Adv. Neurol. 45: 349-352, 1987.

    PubMed  CAS  Google Scholar 

  7. Elble, R. J. Mechanisms of physiologic tremor and relationship to essential tremor. Handbook of tremor disorders. New York : Marcel Dekker, 1994.

    Google Scholar 

  8. Elble, R. J. and J. E. Randall. Motor-unit activity responsible for 8- to 12-Hz component of human physiological finger tremor. J. Neurophysiol. 39:370-383, 1976.

    PubMed  CAS  Google Scholar 

  9. Gandevia, S. C. and D. Burke. Does the nervous system depend on kinesthetic information to control natural limb movements. Behav. Brain Sci. 15:614-632, 1992.

    Google Scholar 

  10. Harwell, R. C. and R. L. Ferguson. Physiologic tremor and microsurgery. Microsurgery 4:187-192, 1983. doi:10.1002/micr.1920040310.

    Article  PubMed  CAS  Google Scholar 

  11. Jones, K. E., A. F. Hamilton, and D. M. Wolpert. Sources of signal dependent noise during isometric force production. J. Neurophysiol. 88:1533-1544, 2002. doi:10.1152/jn.00403.2001.

    Article  PubMed  Google Scholar 

  12. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9:718-727, 1999. doi:10.1016/S0959-4388(99)00028-8.

    Article  PubMed  CAS  Google Scholar 

  13. Keogh, J, S. Morrison, and R. Barrett. Augmented visual feedback increases finger tremor during postural pointing. Exp. Brain Res. 159: 467-477, 2004. doi:10.1007/s00221-004-1968-0.

    Article  PubMed  CAS  Google Scholar 

  14. Kurtzer, I., T. M. Herter, and H. Scott. Random change in cortical load representation suggests distinct control of posture and movement. Nat. Neurosci. 8:498-504, 2005.

    PubMed  CAS  Google Scholar 

  15. Lubahn, J. D., B. G. Dickson, and T. E. Cooney. Effect of Timolol vs. a postural orthotic on hand tremor during microsurgery. Microsurgery 22:273-276, 2002. doi:10.1002/micr.10049.

    Article  PubMed  Google Scholar 

  16. Massie, T., and K. Salisbury. The PHANTOM haptic interface: a device for probing virtual objects. Proceedings of the ASME Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, 1994.

  17. McManamny, D. S. Comparison of microscope and loupe magnification: Assistance for the repair of median and ulnar nerves. Br. J. Plast. Surg. 36: 367-372, 1983.

    PubMed  CAS  Google Scholar 

  18. Morrison, S. and J. Keogh. Changes in the dynamics of tremor during goal-directed pointing. Hum. Mov. Sci. 20:675-693, 2001. doi:10.1016/S0167-9457(01)00072-0.

    Article  PubMed  CAS  Google Scholar 

  19. Morrison, S. and K. Newell. Postural and resting tremor in the upper limb. Clin. Neurophysiol. 111: 651-663, 2000. doi:10.1016/S1388-2457(99)00302-8.

    Article  PubMed  CAS  Google Scholar 

  20. Pieptu, D. and, S. Luchian. Loupes-only microsurgery. Microsurgery 23: 181-188, 2003. doi:10.1002/micr.10126.

    Article  PubMed  Google Scholar 

  21. Rock, J. A., C. A. Bergquist, A. W. Jr. Kimball, H. A. Zacur, and T. M. King. Comparison of the operating microscope and loupe for microsurgical tubal anastomosis: A randomized clinical trial. Fertil. Steril. 41: 229-232, 1984.

    PubMed  CAS  Google Scholar 

  22. Rooks, M. D., J. Slappey, and K. Zusmanis. Precision of suture placement with microscope- and loupe-assisted anastomoses. Microsurgery 14:547-550, 1993. doi:10.1002/micr.1920140813.

    Article  PubMed  CAS  Google Scholar 

  23. Safwat, B. Investigating the Effect of Posture and Visual Feedback on Physiological Tremor. MSc Thesis, Imperial College of Science, Technology and Medicine, London, 2005.

  24. Selen, L. P., P. J. Beek, and J. H. vanDieen. Can co-activation reduce kinematic variability? A simulation study. Biol. Cybern. 93: 373-381, 2005. doi:10.1007/s00422-005-0015-y.

    Article  PubMed  Google Scholar 

  25. Spyers-Ashby, J. M., P. G. Bain, and S. J. Roberts. A comparison of fast fourier transform and autoregressive spectral estimation techniques for the analysis of tremor data. J. Neurosci. Methods 83: 35-43, 1998. doi:10.1016/S0165-0270(98)00064-8.

    Article  PubMed  CAS  Google Scholar 

  26. Stephens, J. A. and A. Taylor. The effect of visual feedback on physiological muscle tremor. Electroencephalogr. Clin. Neurophysiol. 36: 457-464, 1974. doi:10.1016/0013-4694(74)90202-8.

    Article  PubMed  CAS  Google Scholar 

  27. Tass, P., A. Wunderlin, and M. Schanz. A theoretical model of sinusoidal forearm tracking with delayed visual feedback. J. Biol. Phys. 21: 83-112, 1995. doi:10.1007/BF00705593.

    Article  Google Scholar 

  28. Vaillancourt, D. and K. Newell. Amplitude changes in the 8-12, 20-25, and 40 Hz oscillations in finger tremor. Clin. Neurophysiol. 111: 1792-1801, 2000. doi:10.1016/S1388-2457(00)00378-3.

    Article  PubMed  CAS  Google Scholar 

  29. Van Beers, R. J., A. C. Sittig, and J. J. van Der Gon Denier. How humans combine simultaneous proprioceptive and visual position information. Exp. Brain Res. 111:253-261, 1996. doi:10.1016/S0079-6123(08)60413-6.

    Article  PubMed  Google Scholar 

  30. Vasilakos, K. and A. Beuter. Effects of noise on a delayed visual feedback system. J. Theor Biol. 165: 389-407, 1993. doi:10.1006/jtbi.1993.1196.

    Article  PubMed  CAS  Google Scholar 

  31. Vasilakos, K., L. Glass, and A. Beuter. Interaction of tremor and magnification in a motor performance task with visual feedback. J. Motor Behav. 30: 158-168, 1998.

    Article  CAS  Google Scholar 

  32. Wyatt, R. H. A study of power spectral analysis of normal finger tremors. IEEE Trans. Biomed. Eng. 15: 33-45, 1968. doi:10.1109/TBME.1968.4502530.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Fernando Bello for providing us with a haptic interface for some of the experiments and Alex Zivanovic for technical support. Eileen L. M. Su is funded by a scholarship from Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Burdet.

Additional information

The experiments were carried out at National University of Singapore and at Imperial College London.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safwat, B., Su, E.L.M., Gassert, R. et al. The Role of Posture, Magnification, and Grip Force on Microscopic Accuracy. Ann Biomed Eng 37, 997–1006 (2009). https://doi.org/10.1007/s10439-009-9664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9664-7

Keywords

Navigation