Skip to main content

Advertisement

Log in

Assessment of Numerical Simulation Strategies for Ultrasonic Color Blood Flow Imaging, Based on a Computer and Experimental Model of the Carotid Artery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ultrasonic Doppler techniques are well established and allow qualitative and quantitative flow analysis. However, due to inherent limitations of the imaging process, the actual flow dynamics and the ultrasound (US) image do not always correspond. To investigate the performance of ultrasonic flow imaging methods, computational fluid dynamics (CFD) can play an important role. CFD simulations can be directly processed to mimic ultrasonic images or can be further coupled to ultrasound simulation models. We studied both approaches in the clinically relevant setting of a carotid artery using color flow images (CFI). The first order approach consisted of producing ultrasound images by color-coding CFD-simulations. For the second order approach, CFI was simulated using an ultrasound simulator, which models blood as a collection of point scatterers moving according to the CFD velocity fields. Color flow images were also measured in an experimental setup of the same carotid geometry for comparison. Results showed that during dynamic stages of the cardiac cycle, realistic ultrasound data can only be achieved when incorporating both the dynamic image formation and the measurement statistics into the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Balocco, S., O. Basset, and J. Azencot. 3D dynamic model of healthy and pathologic arteries for ultrasound technique evaluation. Med. Phys. 35(12):5440–5450, 2008.

    Article  PubMed  Google Scholar 

  2. Chesarek, R., Ultrasound imaging system for relatively low-velocity blood flow at relatively high frame rates. US Patent 4888694, December 19, 1989.

  3. Funamoto, K., T. Hayase, and Y. Saijo, et al. Numerical experiment of transient and steady characteristics of ultrasonic-measurement-integrated simulation in three-dimensional blood flow analysis. Ann. Biomed. Eng. 37(1):34–49, 2009.

    Article  PubMed  Google Scholar 

  4. Gill, R. W. Measurement of blood flow by ultrasound. Ultrasound Med. Biol. 11:625–641, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Glor, F. P., B. Ariff, A. D. Hughes, L. A. Crowe, P. R. Verdonck, D. C. Barratt, S. A. McG Thom, D. N. Firmin, and X. Y. Xu. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 25(6):1495–1509, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Hoskins, P. R. Simulation and validation of arterial ultrasound imaging and blood flow. Ultrasound Med. Biol. 34(5):693–717, 2008.

    Article  PubMed  Google Scholar 

  7. Jensen, J. A. Field: a program for simulating ultrasound systems. Med. Biol. Eng. Comput. 34(suppl. 1, pt. 1):351–353, 1996.

    Google Scholar 

  8. Jensen, J. A., and P. Munk. Computer phantoms for simulating ultrasound B-mode and CFM images. Acoust. Imag. 23:75–80, 1997.

    Google Scholar 

  9. Jensen, J. A., and N. B. Svendsen. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39:262–267, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Kasai, C., K. Namekawa, A. Koyano, and R. Omoto. Real-time two dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Sonics Ultrason. 32:458–463, 1985.

    Google Scholar 

  11. Kerr, A. T., and J. W. Hunt. A method for computer simulation of ultrasound doppler color flow images—I Theory and numerical method. Ultrasound Med. Biol. 18(10):861–872, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Khoshniat, M., M. Thorne, T. Poepping, S. Hirji, D. Holdsworth, and D. Steinman. Real-time numerical simulation of Doppler ultrasound in the presence of nonaxial flow. Ultrasound Med. Biol. 31(4):519–528, 2005.

    Article  PubMed  Google Scholar 

  13. Milner, J. S., J. A. Moore, C. R. Ethier, B. K. Rutt, and D. A. Steinman. Computed hemodynamics of normal human carotid artery bifurcations derived from magnetic resonance imaging. J. Vasc. Surg. 28:143–156, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura, M., S. Wada, and T. Mikami, et al. Effect of flow disturbances remaining at the beginning of diastole on intraventricular diastolic flow and colour M-mode Doppler echocardiograms. Med. Biol. Eng. Comput. 42(4):509–515, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Ramnarine, K. V., D. K. Nassiri, P. R. Hoskins, and J. Lubbers. Validation of a new blood-mimicking fluid for use in Doppler flow test objects. Ultrasound Med. Biol. 24(3):451–459, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Shattuck, D., M. Weinshenker, S. Smith, and O. Von Ramm. A parallel processing technique for high speed ultrasound imaging with linear phased arrays. J. Acoust. Soc. Am. 75:1273–1282, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Swillens, A., L. Lovstakken, J. Kips, H. Torp, and P. Segers. Ultrasound simulation of complex flow velocity fields based on CFD. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3):546–556, 2009.

    Article  PubMed  Google Scholar 

  18. Thijssen, J. M. Ultrasonic speckle formation, analysis and processing applied to tissue characterization. Pattern Recognit. Lett. 24:659–675, 2003.

    Article  Google Scholar 

  19. Torp, H. Clutter rejection filters in color flow imaging: a theoretical approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44:417–424, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Vierendeels, J., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25:1477–1488, 1992.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Stefaan Vandenberghe and Steven Staelens for scanning the carotid model. Abigail Swillens is supported by a grant of the Special Fund for Scientific Research of the Ghent University (BOF). The authors obtained funding from the FWO (Krediet aan Navorsers 1.5.115.06N and FWO G.0055.05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail Swillens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swillens, A., De Schryver, T., Løvstakken, L. et al. Assessment of Numerical Simulation Strategies for Ultrasonic Color Blood Flow Imaging, Based on a Computer and Experimental Model of the Carotid Artery. Ann Biomed Eng 37, 2188–2199 (2009). https://doi.org/10.1007/s10439-009-9777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9777-z

Keywords

Navigation