Skip to main content
Log in

Characterization of Gastric Electrical Activity Using Magnetic Field Measurements: A Simulation Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gastric disorders are often associated with abnormal propagation of gastric electrical activity (GEA). The identification of clinically relevant parameters of GEA using noninvasive measures would therefore be highly beneficial for clinical diagnosis. While magnetogastrograms (MGG) are known to provide a noninvasive representation of GEA, standard methods for their analysis are limited. It has previously been shown in simplistic conditions that the surface current density (SCD) calculated from multichannel MGG measurements provides an estimate of the gastric source location and propagation velocity. We examine the accuracy of this technique using more realistic source models and an anatomically realistic volume conductor model. The results showed that the SCD method was able to resolve the GEA parameters more reliably when the dipole source was located within 100 mm of the sensor. Therefore, the theoretical accuracy of SCD method would be relatively diminished for patients with a larger body habitus, and particularly in those patients with significant truncal obesity. However, many patients with gastric motility disorders are relatively thin due to food intolerance, meaning that the majority of the population of gastric motility patients could benefit from the methods developed here. Large errors resulted when the source was located deep within the body due to the distorting effects of the secondary sources on the magnetic fields. Larger errors also resulted when the dipole was oriented normal to the sensor plane. This was believed to be due to the relatively small contribution of the dipole source when compared to the field produced by the volume conductor. The use of three orthogonal magnetic field components rather than just one component to calculate the SCD yielded marginally more accurate results when using a realistic dipole source. However, this slight increase in accuracy may not warrant the use of more complex vector channels in future superconducting quantum interference device designs. When multiple slow waves were present in the stomach, the SCD map contained only one maximum point corresponding to the more dominant source located in the distal stomach. Parameters corresponding to the slow wave in the proximal stomach were obtained once the dominant slow terminated at the antrum. Additional validation studies are warranted to address the utility of the SCD method to resolve parameters related to gastric slow waves in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allescher, H. D., K. Abraham-Fuchs, R. E. Dunkel, and M. Classen. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach. Dig. Dis. Sci. 43(4):683–693, 1998.

    Article  CAS  PubMed  Google Scholar 

  2. Austin, T. M., L. Li, A. J. Pullan, and L. K. Cheng. Effects of gastrointestinal tissue structure on computed dipole vectors. Biomed. Eng. Online 6:39, 2007.

    Article  PubMed  Google Scholar 

  3. Bradshaw, L. A., S. H. Allos, J. P. Wikswo, and W. O. Richards. Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. Am. J. Physiol. Gastrointest. Liver Physiol. 272:1159–1167, 1997.

    Google Scholar 

  4. Bradshaw, L. A., L. K. Cheng, W. O. Richards, and A. J. Pullan. Surface current density mapping for identification of gastric slow wave propagation. IEEE Trans. Biomed. Eng. 56(8):2131–2139, 2009.

    Article  PubMed  Google Scholar 

  5. Bradshaw, L. A., A. Irimia, J. A. Sims, M. R. Gallucci, R. L. Palmer, and W. O. Richards. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterol. Motil. 18(8):619–631, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Buist, M. L., L. K. Cheng, K. M. Sanders, and A. J. Pullan. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling? Exp. Physiol. 91(2):383–390, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, J. D., R. D. Richards, and R. W. McCallum. Identification of gastric contractions from the cutaneous electrogastrogram. Am. J. Gastroenterol. 89:79–85, 1994.

    CAS  PubMed  Google Scholar 

  8. Chen, J., J. Vandewalle, W. Sansen, E. van Cutsem, G. Vantrappen, and J. Panssens. Observation of the propagation direction of human electrogastric activity from cutaneous recordings. Med. Biol. Eng. Comput. 27:538–542, 1995.

    Article  Google Scholar 

  9. Chen, J. D. Z., X. Zou, X. Lin, S. Ouyang, and J. Liang. Detection of gastric slow wave propagation from the cutaneous electrogastrogram. Am. J. Physiol. Gastrointest. Liver Physiol. 277:424–430, 1999.

    Google Scholar 

  10. Cheng, L. K., M. L. Buist, and A. J. Pullan. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3158–3161, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, L. K., M. L. Buist, W. O. Richards, L. A. Bradshaw, and A. J. Pullan. Noninvasive localization of gastric electrical activity. Int. J. Bioelectromagn. 7(1):1–4, 2005.

    Google Scholar 

  12. Cheng, L. K., M. L. Buist, R. Yassi, W. O. Richards, L. A. Bradshaw, and A. J. Pullan. A model of the electrical activity of the stomach: from cell to body surface. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3:2761–2764, 2003.

    Google Scholar 

  13. Cheng, L. K., R. Komuro, T. M. Austin, M. L. Buist, and A. J. Pullan. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World J. Gastroenterol. 13(9):1378–1383, 2007.

    PubMed  Google Scholar 

  14. Cheng, L. K., G. O’Grady, P. Du, J. E. Egbuji, J. A. Windsor, and A. J. Pullan. Gastrointestinal system. Wiley Interdisc. Reviews: Syst. Biol. Med. 1:1–15, 2009 (in press). doi:10.1002/wsbm.19

  15. Cheng, L. K., G. O’Grady, P. Du, J. U. Egbuji, J. A. Windsor, and A. J. Pullan. Detailed measurements of gastric electrical activity and their implications on inverse solutions. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:1302–1305, 2009.

    PubMed  Google Scholar 

  16. Cohen, D., and H. Hosaka. Part II: magnetic field produced by a current dipole. J. Electrocardiol. 9(4):409–417, 1976.

    Article  CAS  PubMed  Google Scholar 

  17. Farrugia, G. Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20(Suppl 1):54–63, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Haberkorn, W., U. Steinhoff, M. Burghoff, O. Kosch, A. Morguet, and H. Koch. Pseudo current density maps of electrophysiological heart, nerve or brain function and their physical basis. Biomagn. Res. Technol. 4:5, 2006.

    Article  PubMed  Google Scholar 

  19. Hinder, R. A., and K. A. Kelly. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am. J. Surg. 133(1):29–33, 1977.

    Article  CAS  PubMed  Google Scholar 

  20. Hosaka, H., and D. Cohen. Part IV: visual determination of generators of the magnetocardiogram. J. Electrocardiol. 9(4):426–432, 1976.

    Article  CAS  PubMed  Google Scholar 

  21. Irimia, A., W. O. Richards, and L. A. Bradshaw. Magnetogastrographic detection of gastric electrical response activity in humans. Phys. Med. Biol. 51:1347–1360, 2006.

    Article  PubMed  Google Scholar 

  22. Kandori, A., H. Oe, K. Miyashita, N. Date, N. Yamada, H. Naritomi, Y. Chiba, M. Murakami, T. Miyashita, and K. Tsukada. Visualisation method of spatial interictal discharges in temporal epilepsy patients using magneto-encephalogram. Med. Biol. Eng. Comput. 40(3):327–331, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Komuro, R., L. K. Cheng, and A. J. Pullan. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity. Ann. Biomed. Eng. 36(6):1049–1059, 2008.

    Article  PubMed  Google Scholar 

  24. Lammers, W. J., A. el-Kays, G. W. Manefield, K. Arafat, and T. Y. el-Sharkawy. Disturbances in the propagation of the slow wave during acute local ischaemia in the feline small intestine. Eur. J. Gastroenterol. Hepatol. 9(4):381–388, 1997.

    CAS  PubMed  Google Scholar 

  25. Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296(6):G1200–G1210, 2009.

    Article  CAS  PubMed  Google Scholar 

  26. Mintchev, M. P., Y. J. Kingma, and K. L. Bowes. Accuracy of cutaneous recordings of gastrical activity. Gastroenterology 104:1273–1280, 1993.

    CAS  PubMed  Google Scholar 

  27. Pullan, A., L. Cheng, R. Yassi, and M. Buist. Modelling gastrointestinal bioelectric activity. Prog. Biophys. Mol. Biol. 85(2–3):523–550, 2004.

    Article  PubMed  Google Scholar 

  28. Richards, W. O., C. L. Garrard, S. H. Allos, L. A. Bradshaw, D. J. Staton, and J. P. Wikswo, Jr. Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer. Ann. Surg. 221(6):696–705, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Rose, D. F., E. Ducla-Soares, and S. Sato. Improved accuracy of MEG localization in the temporal region with inclusion of volume current effects. Brain Topogr. 1(3):175–181, 1989.

    Article  CAS  PubMed  Google Scholar 

  30. Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32(1):11–22, 1987.

    Article  CAS  PubMed  Google Scholar 

  31. Sato, M., Y. Terado, T. Mitsui, T. Miyashita, A. Kandori, and K. Tsukada. Visualization of atrial excitation by magnetocardiogram. Int. J. Cardiovasc. Imaging 37:123–127, 2002.

    Google Scholar 

  32. Spitzer, V., M. J. Ackerman, A. L. Scherzinger, and D. Whitlock. The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3(2):118–130, 1996.

    CAS  PubMed  Google Scholar 

  33. Turnbull, G. K., S. P. Ritcey, G. Stroink, B. Brandts, and P. van Leeuwen. Spatial and temporal variations in the magnetic fields produced by human gastrointestinal activity. Med. Biol. Eng. Comput. 37:549–554, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Vittal, H., G. Farrugia, G. Gomez, and P. J. Pasricha. Mechanisms of disease: the pathological basis of gastroparesis—a review of experimental and clinical studies. Nat. Clin. Pract. Gastroenterol. Hepatol. 4:336–346, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants R01 DK 58197 and R01 DK 64775 and a University of Auckland Faculty Research Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H.K., Bradshaw, L.A., Pullan, A.J. et al. Characterization of Gastric Electrical Activity Using Magnetic Field Measurements: A Simulation Study. Ann Biomed Eng 38, 177–186 (2010). https://doi.org/10.1007/s10439-009-9804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9804-0

Keywords

Navigation