Skip to main content
Log in

Simulated Thin Pericardial Bioprosthetic Valve Leaflet Deformation Under Static Pressure-Only Loading Conditions: Implications for Percutaneous Valves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Percutaneous aortic valve (PAV) replacement is currently being investigated as an endovascular alternative to conventional open-chest valve surgery for patients with severe aortic stenosis. The results of multi-center clinical trials of PAV devices have been encouraging. However, there are serious adverse events associated with this procedure. Furthermore, long-term durability and safety of PAV need to be studied carefully. In this study, we developed a thin pericardial bioprosthetic valve model, which has similar design features of PAV. We utilized this model to investigate PAV deformation under static, pressure-only loading conditions using Finite Element method. Mechanical properties of PAV leaflet were obtained from planar biaxial testing of glutaraldehyde treated thin bovine pericardium (BP) and porcine pericardium (PP), and characterized by the Fung-elastic model. Simulations were performed to examine the effects of tissue thickness and anisotropy on the valve deformation and stress distribution. The results indicated peak stress and strain occurred in the vicinity of commissures. The peak maximum principal stresses (MPS) were reduced with the increase of leaflet tissue thickness, by 36% and 59% from the mean thickness to 0.35 mm for BP and PP, respectively. The PAV with BP leaflet had a lower peak MPS than that with PP leaflet. Moreover, leaflet material orientation had a significant influence on the peak MPS of PAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. AHA, American Heart Association: Heart Disease and Stroke Statistics—2010 Update, 2010.

  2. Balentine, J., and A. Eisenhart, Aortic Stenosis, Emergency Medicine, 2007.

  3. Berland, G., P. Block, T. DeLoughery, and G. Grunkemeier. Clinical one-year outcomes after stenting in acute myocardial infarction. Cathet. Cardiovasc. Diagn. 40(4):337–341, 1997.

    Article  CAS  PubMed  Google Scholar 

  4. Berry, C., A. Asgar, Y. Lamarche, B. Marcheix, P. Couture, A. Basmadjian, A. Ducharme, J. Laborde, R. Cartier, and R. Bonan, Novel therapeutic aspects of percutaneous aortic valve replacement with the 21F CoreValve Revalving System. Catheter. Cardiovasc. Interv., 4(70):610–616, 2007.

    Article  Google Scholar 

  5. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122(1):23–30, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Cacciola, G., G. W. Peters, and F. P. Baaijens. A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33(6):653–658, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Cacciola, G., G. W. Peters, and P. J. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33(5):521–530, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Christie, G. W. Computer modelling of bioprosthetic heart valves. Eur. J. Cardio-Thorac. Surg. 6:S95–S101, 1992.

    Article  Google Scholar 

  9. Christie, G. W., and B. G. Barratt-Boyes. On stress reduction in bioprosthetic heart valve leaflets by the use of a flexible stent. J. Card. Surg. 6(4):476–481, 1991.

    Article  CAS  PubMed  Google Scholar 

  10. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer Verlag, 1993.

    Google Scholar 

  11. Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73(4):1122–1129, 2002.

    Article  PubMed  Google Scholar 

  12. Grube, E., J. C. Laborde, U. Gerckens, T. Felderhoff, B. Sauren, L. Buellesfeld, R. Mueller, M. Menichelli, T. Schmidt, B. Zickmann, S. Iversen, and G. W. Stone. Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation. 114(15):1616–1624, 2006; Epub 2006 Oct.

    Article  PubMed  Google Scholar 

  13. Grube, E., J. C. Laborde, B. Zickmann, U. Gerckens, T. Felderhoff, B. Sauren, A. Bootsveld, L. Buellesfeld, and S. Iversen. First report on a human percutaneous transluminal implantation of a self-expanding valve prothesis for interventional treatment of aortic valve stenosis. Catheter. Cardiovasc. Interv. 66(4):465–469, 2005.

    Article  PubMed  Google Scholar 

  14. Grube, E., G. Schuler, L. Buellesfeld, U. Gerckens, A. Linke, P. Wenaweser, B. Sauren, F. Mohr, T. Walther, B. Zickmann, S. Iversen, T. Felderhoff, R. Cartier, and R. Bonan. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J. Am. Coll. Cardiol. 1(50):69–76, 2007.

    Article  Google Scholar 

  15. Iung, B., G. Baron, E. G. Butchart, F. Delahaye, C. Gohlke-Barwolf, O. W. Levang, P. Tornos, J. L. Vanoverschelde, F. Vermeer, E. Boersma, P. Ravaud, and A. Vahanian. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24(13):1231–1243, 2003.

    Article  PubMed  Google Scholar 

  16. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic Simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008.

    Article  PubMed  Google Scholar 

  17. Krucinski, S., I. Vesely, M. A. Dokainish, and G. Campbell. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26(8):929–943, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Langdon, S. E., R. Chernecky, C. A. Pereira, D. Abdulla, and J. M. Lee. Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials 20(2):137–153, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J. M., and S. E. Langdon. Thickness measurements of soft tissue biomaterials: a comparison of five methods. J. Biomech. 29(6):829–932, 1996.

    Article  CAS  PubMed  Google Scholar 

  20. Libby, P., R. O. Bonow, D. P. Zipes, and D. L. Mann. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, PA: Saunders, An imprint of Elsevier, 2007.

    Google Scholar 

  21. Lutter, G., D. Kuklinski, G. Berg, P. von Samson, J. Martin, M. Handke, P. Uhrmeister, and F. Beyersdorf. Percutaneous aortic valve replacement: an experimental study. I. Studies on implantation. J. Thorac. Cardiovasc. Surg. 123(4):768–776, 2002.

    Article  PubMed  Google Scholar 

  22. Marcheix, B., Y. Lamarche, C. Berry, A. Asgar, J. Laborde, A. Basmadjian, A. Ducharme, A. Denault, R. Bonan, and R. Cartier. Surgical aspects of endovascular retrograde implantation of the aortic CoreValve bioprosthesis in high-risk older patients with severe symptomatic aortic stenosis. J. Thorac. Cardiovasc. Surg. 5(134):1150–1156, 2007.

    Google Scholar 

  23. Movahed, M. Where are we going with percutaneous aortic valve replacement? Expert Rev. Cardiovasc. Ther. 6(5):997–998, 2007.

    Article  Google Scholar 

  24. Sacks, M. S., and C. J. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26(5):892–902, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3):359–371, 2002.

    Article  CAS  PubMed  Google Scholar 

  26. Schultz, C. J., A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the CoreValve ReValving System with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54(10):911–918, 2009.

    Article  PubMed  Google Scholar 

  27. Simulia, Abaqus Analysis User’s Manual. Providence, RI, 2009.

  28. Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6):905–914, 2005.

    Article  PubMed  Google Scholar 

  29. Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar tissues. Biomech. Model. Mechanobiol. 4(2–3):190–199, 2005.

    Article  PubMed  Google Scholar 

  30. Sun, W., M. S. Sacks, T. L. Sellaro, W. S. Slaughter, and M. J. Scott. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. 125:372–380, 2003.

    Article  PubMed  Google Scholar 

  31. Sung, H. W., Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47(2):116–126, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. US Market for Cardiac Surgery Devices, iData Research Inc., 2009.

  33. Vesely, I. The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 12(5):277–286, 2003.

    Article  CAS  PubMed  Google Scholar 

  34. Webb, J. G., L. Altwegg, J.-B. Masson, S. A. Bugami, A. A. Ali, and R. A. Boone. A new transcatheter aortic valve and percutaneous valve delivery system. J. Am. Coll. Cardiol. 53(20):1855–1858, 2009.

    Article  PubMed  Google Scholar 

  35. Webb, J., S. Pasupati, K. Humphries, C. Thompson, L. Altwegg, R. Moss, A. Sinhal, R. Carere, B. Munt, D. Ricci, J. Ye, A. Cheung, and S. Lichtenstein. Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation 7(116):755–763, 2007.

    Article  Google Scholar 

  36. Zajarias, A., and A. G. Cribier. Outcomes and safety of percutaneous aortic valve replacement. J. Am. Coll. Cardiol. 53(20):1829–1836, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the State of Connecticut Department of Public Health Biomedical Research Grant DPH2010-0085 and the AHA SDG award 0930319N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Sun, W. Simulated Thin Pericardial Bioprosthetic Valve Leaflet Deformation Under Static Pressure-Only Loading Conditions: Implications for Percutaneous Valves. Ann Biomed Eng 38, 2690–2701 (2010). https://doi.org/10.1007/s10439-010-0009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0009-3

Keywords

Navigation