Skip to main content
Log in

Tissue Engineering Strategies for the Regeneration of Orthopedic Interfaces

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A major focus in the field of orthopedic tissue engineering is the development of tissue engineered bone and soft tissue grafts with biomimetic functionality to allow for their translation to the clinical setting. One of the most significant challenges of this endeavor is promoting the biological fixation of these grafts with each other as well as the implant site. Such fixation requires strategic biomimicry to be incorporated into the scaffold design in order to re-establish the critical structure–function relationship of the native soft tissue-to-bone interface. The integration of distinct tissue types (e.g. bone and soft tissues such as cartilage, ligaments, or tendons), necessitates a multi-phased or stratified scaffold with distinct yet continuous tissue regions accompanied by a gradient of mechanical properties. This review discusses tissue engineering strategies for regenerating common tissue-to-tissue interfaces (ligament-to-bone, tendon-to-bone, or cartilage-to-bone), and the strategic biomimicry implemented in stratified scaffold design for multi-tissue regeneration. Potential challenges and future directions in this emerging field will also be presented. It is anticipated that interface tissue engineering will enable integrative soft tissue repair, and will be instrumental for the development of complex musculoskeletal tissue systems with biomimetic complexity and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Alhadlaq, A., and J. J. Mao. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J. Bone Joint Surg. Am. 87:936–944, 2005.

    Article  PubMed  Google Scholar 

  2. Allan, K. S., R. M. Pilliar, J. Wang, et al. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 13:167–177, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Altman, G. H., R. L. Horan, H. H. Lu, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Altman, G. H., R. L. Horan, P. Weitzel, et al. The use of long-term bioresorbable scaffolds for anterior cruciate ligament repair. J. Am. Acad. Orthop. Surg. 16:177–187, 2008.

    PubMed  Google Scholar 

  5. Benjamin, M., E. J. Evans, and L. Copp. The histology of tendon attachments to bone in man. J. Anat. 149:89–100, 1986.

    PubMed  CAS  Google Scholar 

  6. Blevins, F. T., M. Djurasovic, E. L. Flatow, and K. G. Vogel. Biology of the rotator cuff tendon. Orthop. Clin. North Am. 28:1–16, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Bullough, P. G., and A. Jagannath. The morphology of the calcification front in articular cartilage. Its significance in joint function. J. Bone Joint Surg. Br. 65:72–78, 1983.

    PubMed  CAS  Google Scholar 

  8. Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122:570–575, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, C. H., W. J. Chen, C. H. Shih, et al. Enveloping the tendon graft with periosteum to enhance tendon-bone healing in a bone tunnel: a biomechanical and histologic study in rabbits. Arthroscopy 19:290–296, 2003.

    PubMed  Google Scholar 

  10. Chen, G., T. Sato, J. Tanaka, and T. Tateishi. Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater. Sci. Eng. C 26:118–123, 2006.

    Article  CAS  Google Scholar 

  11. Coons, D. A., and B. F. Alan. Tendon graft substitutes-rotator cuff patches. Sports Med. Arthrosc. 14:185–190, 2006.

    Article  PubMed  Google Scholar 

  12. Cooper, J. A., H. H. Lu, F. K. Ko, et al. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Cooper, R. R., and S. Misol. Tendon and ligament insertion. A light and electron microscopic study. J. Bone Joint Surg. Am. 52:1–20, 1970.

    PubMed  CAS  Google Scholar 

  14. Cooper, Jr., J. A., J. S. Sahota, W. J. Gorum, et al. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc. Natl Acad. Sci. USA 104:3049–3054, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Derwin, K. A., A. R. Baker, R. K. Spragg, et al. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J. Bone Joint Surg. Am. 88:2665–2672, 2006.

    Article  PubMed  Google Scholar 

  16. Dunn, M. G., J. B. Liesch, M. L. Tiku, and J. P. Zawadsky. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J. Biomed. Mater. Res. 29:1363–1371, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Dunn, M. G., A. J. Tria, Y. P. Kato, et al. Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. A biomechanical and histologic study in rabbits. Am. J. Sports Med. 20:507–515, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Erisken, C., D. M. Kalyon, and H. Wang. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073, 2008.

    Article  PubMed  CAS  Google Scholar 

  19. Fawns, H. T., and J. W. Landells. Histochemical studies of rheumatic conditions. I. Observations on the fine structures of the matrix of normal bone and cartilage. Ann. Rheum. Dis. 12:105–113, 1953.

    Article  PubMed  CAS  Google Scholar 

  20. Friedman, M. J., O. H. Sherman, J. M. Fox, et al. Autogeneic anterior cruciate ligament (ACL) anterior reconstruction of the knee. A review. Clin. Orthop. 196:9–14, 1985.

    PubMed  Google Scholar 

  21. Fujioka, H., R. Thakur, G. J. Wang, et al. Comparison of surgically attached and non-attached repair of the rat Achilles tendon-bone interface. Cellular organization and type X collagen expression. Connect. Tissue Res. 37:205–218, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Gao, J., J. E. Dennis, L. A. Solchaga, et al. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 7:363–371, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Harley, B. A., A. K. Lynn, Z. Wissner-Gross, et al. Design of a multiphase osteochondral scaffold. III. Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. A 92:1078–1093, 2010.

    PubMed  Google Scholar 

  24. Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103, 2002.

    Article  PubMed  CAS  Google Scholar 

  25. Huangfu, X., and J. Zhao. Tendon-bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament reconstruction model. Arthroscopy 23:455–462, 2007.

    Article  PubMed  Google Scholar 

  26. Iannotti, J. P., M. J. Codsi, Y. W. Kwon, et al. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J. Bone Joint Surg. Am. 88:1238–1244, 2006.

    Article  PubMed  Google Scholar 

  27. Inoue, N., K. Ikeda, H. T. Aro, et al. Biologic tendon fixation to metallic implant augmented with autogenous cancellous bone graft and bone marrow in a canine model. J. Orthop. Res. 20:957–966, 2002.

    Article  PubMed  Google Scholar 

  28. Itoi, E., L. J. Berglund, J. J. Grabowski, et al. Tensile properties of the supraspinatus tendon. J. Orthop. Res. 13:578–584, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Jiang, J., A. Tang, G. A. Ateshian, X. E. Guo, C. T. Hung, and H. H. Lu. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann. Biomed. Eng. 2010. doi:10.1007/s10439-010-0038-y.

  30. Khanarian, N. T., N. M. Haney, R. A. Burga, and H. H. Lu. Evaluation of zonal cartilage homeostasis using 3D explant model. In: Transactions of the 56th Orthopaedic Research Society, 2010.

  31. Kyung, H. S., S. Y. Kim, C. W. Oh, and S. J. Kim. Tendon-to-bone tunnel healing in a rabbit model: the effect of periosteum augmentation at the tendon-to-bone interface. Knee Surg. Sports Traumatol. Arthrosc. 11:9–15, 2003.

    PubMed  Google Scholar 

  32. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260:920–926, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Larkin, L. M., S. Calve, T. Y. Kostrominova, and E. M. Arruda. Structure and functional evaluation of tendon-skeletal muscle constructs engineered in vitro. Tissue Eng. 12:3149–3158, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Li, W. J., C. T. Laurencin, E. J. Caterson, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613–621, 2002.

    Article  PubMed  CAS  Google Scholar 

  35. Li, W. J., R. L. Mauck, J. A. Cooper, et al. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40:1686–1693, 2007.

    Article  PubMed  Google Scholar 

  36. Li, X. R., J. W. Xie, J. Lipner, et al. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 9:2763–2768, 2009.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, S. H., V. Panossian, R. al Shaikh, et al. Morphology and matrix composition during early tendon to bone healing. Clin. Orthop. Relat. Res. 339:253–260, 1997.

    Article  PubMed  Google Scholar 

  38. Lu, H. H., J. A. Cooper, Jr., S. Manuel, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26(23):4805–4816, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Lu, H. H., S. F. El Amin, K. D. Scott, and C. T. Laurencin. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J. Biomed. Mater. Res. 64A:465–474, 2003.

    Article  CAS  Google Scholar 

  40. Lu, H. H., and J. Jiang. Interface tissue engineering and the formulation of multiple-tissue systems. Adv. Biochem. Eng. Biotechnol. 102:91–111, 2006.

    PubMed  CAS  Google Scholar 

  41. Lu, H. H., J. Jiang, A. Tang, et al. Development of controlled heterogeneity on a polymer–ceramic hydrogel scaffold for osteochondral repair. Bioceramics 17:607–610, 2005.

    Google Scholar 

  42. Lyons, T. J., R. W. Stoddart, S. F. McClure, and J. McClure. The tidemark of the chondro-osseous junction of the normal human knee joint. J. Mol. Histol. 36:207–215, 2005.

    Article  PubMed  CAS  Google Scholar 

  43. Ma, J., K. Goble, M. Smietana, et al. Morphological and functional characteristics of three-dimensional engineered bone-ligament-bone constructs following implantation. J. Biomech. Eng. 131:101017, 2009.

    Article  PubMed  Google Scholar 

  44. Ma, Z., M. Kotaki, R. Inai, and S. Ramakrishna. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11:101–109, 2005.

    Article  PubMed  Google Scholar 

  45. Matyas, J. R., M. G. Anton, N. G. Shrive, and C. B. Frank. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. J. Biomech. 28:147–157, 1995.

    Article  PubMed  CAS  Google Scholar 

  46. Moffat, K. L., I. E. Wang, S. A. Rodeo, and H. H. Lu. Orthopaedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin. Sports Med. 28(1):157–176, 2009.

    Article  PubMed  Google Scholar 

  47. Moffat, K. L., A. S. Kwei, J. P. Spalazzi, et al. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng. Part A 15:115–126, 2009.

    Article  PubMed  CAS  Google Scholar 

  48. Moffat, K. L., W. N. Levine, and H. H. Lu. In vitro evaluation of rotator cuff tendon fibroblasts on aligned composite scaffold of polymer nanofibers and hydroxyapatite nanoparticles. In: Transactions of the 54th Orthopaedic Research Society, 2008.

  49. Moffat, K. L., W. H. Sun, P. E. Pena, et al. Characterization of the structure–function relationship at the ligament-to-bone interface. Proc. Natl Acad. Sci. USA 105:7947–7952, 2008.

    Article  PubMed  Google Scholar 

  50. Murugan, R., and S. Ramakrishna. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 13:1845–1866, 2007.

    Article  PubMed  CAS  Google Scholar 

  51. Mutsuzaki, H., M. Sakane, H. Nakajima, et al. Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion. J. Biomed. Mater. Res. A 70:319–327, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Nawata, K., T. Minamizaki, Y. Yamashita, and R. Teshima. Development of the attachment zones in the rat anterior cruciate ligament: changes in the distributions of proliferating cells and fibrillar collagens during postnatal growth. J. Orthop. Res. 20:1339–1344, 2002.

    Article  PubMed  CAS  Google Scholar 

  53. Niederauer, G. G., M. A. Slivka, N. C. Leatherbury, et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 21:2561–2574, 2000.

    Article  PubMed  CAS  Google Scholar 

  54. Oegema, Jr., T. R., and R. C. Thompson, Jr. Cartilage-bone interface (tidemark). In: Cartilage Changes in Osteoarthritis, edited by C.-G. K. Brandt. Indianapolis, IN: Indiana School of Medicine Publ., 1990.

  55. Oegema Jr., T. R., and R. C. Thompson Jr. The zone of calcified cartilage. Its role in osteoarthritis. In: Articular Cartilage and Osteoarthritis, edited by K. E. Kuettner, R. Schleyerbach, J. G. Peyron, and V. C. Hascall. New York, NY: Raven Press, 1992.

    Google Scholar 

  56. Ohtera, K., Y. Yamada, M. Aoki, et al. Effects of periosteum wrapped around tendon in a bone tunnel: a biomechanical and histological study in rabbits. Crit. Rev. Biomed. Eng. 28:115–118, 2000.

    PubMed  CAS  Google Scholar 

  57. Paxton, J. Z., K. Donnelly, R. P. Keatch, and K. Baar. Engineering the bone–ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng. Part A 15:1201–1209, 2009.

    Article  PubMed  CAS  Google Scholar 

  58. Pham, Q. P., U. Sharma, and A. G. Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12:1197–1211, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. Phillips, J. E., K. L. Burns, J. M. Le Doux, et al. Engineering graded tissue interfaces. Proc. Natl Acad. Sci. USA 105:12170–12175, 2008.

    Article  PubMed  Google Scholar 

  60. Ralphs, J. R., M. Benjamin, A. D. Waggett, et al. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J. Anat. 193(Pt 2):215–222, 1998.

    Article  PubMed  CAS  Google Scholar 

  61. Robertson, D. B., D. M. Daniel, and E. Biden. Soft tissue fixation to bone. Am. J. Sports Med. 14:398–403, 1986.

    Article  PubMed  CAS  Google Scholar 

  62. Rodeo, S. A., S. P. Arnoczky, P. A. Torzilli, et al. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Joint Surg. Am. 75:1795–1803, 1993.

    PubMed  CAS  Google Scholar 

  63. Rodeo, S. A., K. Suzuki, X. H. Deng, et al. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med. 27:476–488, 1999.

    PubMed  CAS  Google Scholar 

  64. Schaefer, D., I. Martin, P. Shastri, et al. In vitro generation of osteochondral composites. Biomaterials 21:2599–2606, 2000.

    Article  PubMed  CAS  Google Scholar 

  65. Shao, X., J. C. Goh, D. W. Hutmacher, et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng. 12:1539–1551, 2006.

    Article  PubMed  CAS  Google Scholar 

  66. Sherwood, J. K., S. L. Riley, R. Palazzolo, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751, 2002.

    Article  PubMed  CAS  Google Scholar 

  67. Simon, Jr., C. G., C. A. Khatri, S. A. Wight, and F. W. Wang. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres. J. Orthop. Res. 20:473–482, 2002.

    Article  PubMed  CAS  Google Scholar 

  68. Singh, M., C. P. Morris, R. J. Ellis, et al. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng. Part C 14:299–309, 2008.

    Article  CAS  Google Scholar 

  69. Singh, M., B. Sandhu, A. Scurto, et al. Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater. 6:137–143, 2010.

    Article  PubMed  CAS  Google Scholar 

  70. Skalak, R. Tissue Engineering: Proceedings of a Workshop, held at Granlibakken, Lake Tahoe, California, February 26–29. New York, NY: Liss, 1988.

  71. Spalazzi, J. P., J. Gallina, S. D. Fung-Kee-Fung, E. E. Konofagou, and H. H. Lu. Elastographic imaging of strain distributions within the anterior cruciate ligament and at the ligament-to-bone insertion. J. Orthop. Res. 24(10):2001–2010, 2006.

    Article  PubMed  Google Scholar 

  72. Spalazzi, J. P., E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo, and H. H. Lu. In vivo evaluation of multi-phased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86A(1):1–12, 2008.

    Article  CAS  Google Scholar 

  73. Spalazzi, J. P., S. B. Doty, K. L. Moffat, et al. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 12:3497–3508, 2006.

    Article  PubMed  CAS  Google Scholar 

  74. Spalazzi, J. P., K. L. Moffat, and H. H. Lu. Design of a novel stratified scaffold for ACL-to-bone interface tissue engineering. In: 8th International Symposium on Ligaments and Tendons, 2008.

  75. Spalazzi, J. P., M. C. Vyner, M. T. Jacobs, et al. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers. Clin. Orthop. Relat. Res. 466:1938–1948, 2008.

    Article  PubMed  Google Scholar 

  76. Swasdison, S., and R. Mayne. In vitro attachment of skeletal muscle fibers to a collagen gel duplicates the structure of the myotendinous junction. Exp. Cell Res. 193:227–231, 1991.

    Article  PubMed  CAS  Google Scholar 

  77. Swasdison, S., and R. Mayne. Formation of highly organized skeletal muscle fibers in vitro. Comparison with muscle development in vivo. J. Cell Sci. 102(Pt 3):643–652, 1992.

    PubMed  Google Scholar 

  78. Swieszkowski, W., B. H. S. Tuan, K. J. Kurzydlowski, and D. W. Hutmacher. Repair and regeneration of osteochondral defects in the articular joints. Biomol. Eng. 24:489–495, 2007.

    Article  PubMed  CAS  Google Scholar 

  79. Thomopoulos, S., G. R. Williams, J. A. Gimbel, et al. Variations of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.

    Article  PubMed  Google Scholar 

  80. Tidball, J. G. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc. Sport Sci. Rev. 19:419–445, 1991.

    Article  PubMed  CAS  Google Scholar 

  81. Tien, Y. C., T. T. Chih, J. H. Lin, et al. Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J. Bone Joint Surg. Br. 86:1072–1076, 2004.

    Article  PubMed  CAS  Google Scholar 

  82. Wang, I. E., S. Mitroo, F. H. Chen, et al. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J. Orthop. Res. 24:1745–1755, 2006.

    Article  PubMed  CAS  Google Scholar 

  83. Wang, I. E., J. Shan, R. Choi, et al. Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25:1609–1620, 2007.

    Article  PubMed  CAS  Google Scholar 

  84. Woo, S. L., and J. A. Buckwalter. AAOS/NIH/ORS workshop. Injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18–20, 1987. J. Orthop. Res. 6:907–931, 1988.

    Google Scholar 

  85. Woo, S. L., J. Maynard, and D. L. Butler. Ligament, tendon, and joint capsule insertions to bone. In: Injury and Repair of the Musculosketal Soft Tissues, edited by S. L. Woo, J. A. Bulkwater. Savannah, Georgia: American Academy of Orthopaedic Surgeons, 1988.

    Google Scholar 

  86. Yang, P. J., and J. S. Temenoff. Engineering orthopedic tissue interfaces. Tissue Eng. Part B Rev. 15:127–141, 2009.

    Article  PubMed  CAS  Google Scholar 

  87. Youn, I., D. G. Jones, P. J. Andrews, et al. Periosteal augmentation of a tendon graft improves tendon healing in the bone tunnel. Clin. Orthop. Relat. Res. 419:223–231, 2004.

    Article  PubMed  Google Scholar 

  88. Yu, H., M. Grynpas, and R. A. Kandel. Composition of cartilagenous tissue with mineralized and non-mineralized zones formed in vitro. Biomaterials 18:1425–1431, 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding support from the National Institutes of Health (AR056459 and AR055280), the Wallace H. Coulter Foundation, the National Science Foundation Graduate Fellowship (SDS), and the National Sciences and Engineering Research Council of Canada (XZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen H. Lu.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H.H., Subramony, S.D., Boushell, M.K. et al. Tissue Engineering Strategies for the Regeneration of Orthopedic Interfaces. Ann Biomed Eng 38, 2142–2154 (2010). https://doi.org/10.1007/s10439-010-0046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0046-y

Keywords

Navigation