Skip to main content
Log in

A Model of Slow Wave Propagation and Entrainment Along the Stomach

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Interstitial cells of Cajal (ICC) isolated from different regions of the stomach generate spontaneous electrical slow wave activity at different frequencies, with cells from the proximal stomach pacing faster than their distal counterparts. However, in vivo there exists a uniform pacing frequency; slow waves propagate aborally from the proximal stomach and subsequently entrain distal tissues. Significant resting membrane potential (RMP) gradients also exist within the stomach whereby membrane polarization generally increases from the fundus to the antrum. Both of these factors play a major role in the macroscopic electrical behavior of the stomach and as such, any tissue or organ level model of gastric electrophysiology should ensure that these phenomena are properly described. This study details a dual-cable model of gastric electrical activity that incorporates biophysically detailed single-cell models of the two predominant cell types, the ICC and smooth muscle cells. Mechanisms for the entrainment of the intrinsic pacing frequency gradient and for the establishment of the RMP gradient are presented. The resulting construct is able to reproduce experimentally recorded slow wave activity and provides a platform on which our understanding of gastric electrical activity can advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5

Similar content being viewed by others

Abbreviations

RMP:

Resting membrane potential

ICC:

Interstitial cells of Cajal

SMC:

Smooth muscle cell

ICC-MY:

ICC from the myenteric plexus

ICC–IM:

Intramuscular ICC

References

  1. Aliev, R. R., W. Richards, and J. P. Wikswo. A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204:21–28, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Bayguinov, O., S. M. Ward, J. L. Kenyon, and K. M. Sanders. Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum. Am. J. Physiol. Cell Physiol. 293:C1645–C1659, 2007.

    Article  CAS  PubMed  Google Scholar 

  3. Bédard, C., and A. Destexhe. A modified cable formalism for modeling neuronal membranes at high frequencies. Biophys. J. 94:1133–1143, 2008.

    Article  PubMed  Google Scholar 

  4. Bondarenko, V. E., and R. L. Rasmusson. Simulations of propagated mouse ventricular action potentials: effects of molecular heterogeneity. Am. J. Physiol. Heart Circ. Physiol. 293:H1816–H1832, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Breitwieser, G. E. Mechanisms of K+ channel regulation. J. Membr. Biol. 152:1–11, 1996.

    Article  CAS  PubMed  Google Scholar 

  6. Corrias, A., and M. L. Buist. A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35:1595–1607, 2007.

    Article  PubMed  Google Scholar 

  7. Corrias, A., and M. L. Buist. Quantitative cellular description of gastric slow wave activity. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G989–G995, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Du, P., G. O’Grady, J. U. Egbuji, W. J. Lammers, D. Budgett, P. Nielsen, J. A. Windsor, A. J. Pullan, and L. K. Cheng. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed. Eng. 37:839–846, 2009.

    Article  PubMed  Google Scholar 

  9. Durante, W., F. K. Johnson, and R. A. Johnson. Role of carbon monoxide in cardiovascular function. J. Cell. Mol. Med. 10:672–686, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Edwards, F. R., and G. D. S. Hirst. An electrical description of the generation of slow waves in the antrum of the guinea-pig. J. Physiol. 564:213–232, 2005.

    Article  CAS  PubMed  Google Scholar 

  11. Farrugia, G., W. A. Irons, J. L. Rae, M. G. Sarr, and J. H. Szurszewski. Activation of whole cell currents in isolated human jejunal circular smooth muscle cells by carbon monoxide. Am. J. Physiol. 264:G1184–G1189, 1993.

    CAS  PubMed  Google Scholar 

  12. Farrugia, G., S. Lei, X. Lin, S. M. Miller, K. A. Nath, C. D. Ferris, M. Levitt, and J. H. Szurszewski. A major role for carbon monoxide as an endogenous hyperpolarizing factor in the gastrointestinal tract. Proc. Natl Acad. Sci. USA 100:8567–8570, 2003

    Article  CAS  PubMed  Google Scholar 

  13. Farrugia, G., S. M. Miller, A. Rich, X. Liu, M. D. Maines, J. L. Rae, and J. H. Szurszewski. Distribution of heme oxygenase and effects of exogenous carbon monoxide in canine jejunum. Am. J. Physiol. 274:G350–G358, 1998.

    CAS  PubMed  Google Scholar 

  14. Hashitani, H., A. P. Garcia-Londoño, G. D. S. Hirst, and F. R. Edwards. Atypical slow waves generated in gastric corpus provide dominant pacemaker activity in guinea pig stomach. J. Physiol. 569:459–465, 2005.

    Article  CAS  PubMed  Google Scholar 

  15. Hirst, G. D. S., E. A. H. Beckett, K. M. Sanders, and S. M. Ward. Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum. J. Physiol. 540:1003–1012, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Hirst, G. D. S., and F. R. Edwards. Electrical events underlying organized myogenic contractions of the guinea pig stomach. J. Physiol. 576:659–665, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, C. L., and L. D. Peachey. A reconstruction of charge movement during the action potential in frog skeletal muscle. Biophys. J. 61:1133–1146, 1992.

    Article  CAS  PubMed  Google Scholar 

  18. Kadinov, B., D. Itzev, H. Gagov, T. Christova, T. B. Bolton, and D. Duridanova. Induction of heme oxygenase in guinea-pig stomach: roles in contraction and in single muscle cell ionic currents. Acta Physiol. Scand. 175:297–313, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, T. W., S. D. Koh, T. Ordög, S. M. Ward, and K. M. Sanders. Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J. Physiol. 546:415–425, 2003.

    Article  CAS  PubMed  Google Scholar 

  20. Komuro, T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J. Physiol. 576:653–658, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Lammers, W. J., B. Stephen, E. Adeghate, S. Ponery, and O. Pozzan. The slow wave does not propagate across the gastroduodenal junction in the isolated feline preparation. Neurogastroenterol. Motil. 10:339–349, 1998.

    Article  CAS  PubMed  Google Scholar 

  22. Lammers, W. J. E. P., L. Ver Donck, B. Stephen, D. Smets, and J. A. J. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1200–G1210, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, H. T., G. W. Hennig, N. W. Fleming, K. D. Keef, N. J. Spencer, S. M. Ward, K. M. Sanders, and T. K. Smith. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology 132:1852–1865, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Lin, A. S. H., M. L. Buist, N. P. Smith, and A. J. Pullan. Modelling slow wave activity in the small intestine. J. Theor. Biol. 242:356–362, 2006.

    Article  PubMed  Google Scholar 

  25. Malysz, J., G. Donnelly, and J. D. Huizinga. Regulation of slow wave frequency by IP(3)-sensitive calcium release in the murine small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G439–G448, 2001.

    CAS  PubMed  Google Scholar 

  26. Pullan, A., L. Cheng, R. Yassi, and M. Buist. Modelling gastrointestinal bioelectric activity. Prog. Biophys. Mol. Biol. 85:523–550, 2004.

    Article  PubMed  Google Scholar 

  27. Sanders, K. M., S. D. Koh, and S. M. Ward. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68:307–343, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Spitzer, V., M. J. Ackerman, A. L. Scherzinger, and D. Whitlock. The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3:118–130, 1996.

    CAS  PubMed  Google Scholar 

  29. Stratton, C. J., S. M. Ward, K. Horiguchi, and K. M. Sanders. Immunocytochemical identification of interstitial cells of Cajal in the murine fundus using a live-labelling technique. Neurogastroenterol. Motil. 19:152–159, 2007.

    Article  CAS  PubMed  Google Scholar 

  30. Szurszewski, J. Electrical basis for gastrointestinal motility. In: Physiology of the Gastrointestinal Tract, edited by L. Johnson. New York: Raven Press, 1987, pp. 383–422.

    Google Scholar 

  31. Szurszewski, J. H., and G. Farrugia. Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol. Motil. 16(Suppl 1):81–85, 2004.

    Article  PubMed  Google Scholar 

  32. Wang, R., and L. Wu. The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J. Biol. Chem. 272:8222–8226, 1997.

    Article  CAS  PubMed  Google Scholar 

  33. Ward, S. M., R. E. Dixon, A. de Faoite, and K. M. Sanders. Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum. J. Physiol. 561:793–810, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. Buist.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buist, M.L., Corrias, A. & Poh, Y.C. A Model of Slow Wave Propagation and Entrainment Along the Stomach. Ann Biomed Eng 38, 3022–3030 (2010). https://doi.org/10.1007/s10439-010-0051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0051-1

Keywords

Navigation