Skip to main content
Log in

Influences of Acid-Treated Multiwalled Carbon Nanotubes on Fibroblasts: Proliferation, Adhesion, Migration, and Wound Healing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

With the increasing applications of carbon nanotubes (CNTs) in fields of biomedical engineering and medical chemistry, it is important to understand the response of mammalian cells to the CNTs exposure and treatment. In this study, the influences of multiwalled carbon nanotubes (MWCNTs) on cellular behavior of human dermal fibroblasts and NIH 3T3 murine fibroblasts were investigated. Results showed that the MWCNTs treatment induced dose-dependent cytotoxicity and arrested the cell cycle in the G1 phase, indicating inhibition of DNA synthesis. The presence of MWCNTs also down regulated the expression level of adhesion-related genes, and simultaneously caused cytoskeleton damage and disturbance of actin stress fibers, thereby inducing dramatically adverse effects on the cell physiological functions such as cell spreading, adhesion, migration, and wound healing ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Baughman, R. H., A. A. Zakhidov, and W. A. de Heer. Carbon nanotubes—the route toward applications. Science 297(5582):787–792, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. Bianco, A., and M. Prato. Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater. 15(20):1765–1766, 2003.

    Article  CAS  Google Scholar 

  3. Bottini, M., S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, and T. Mustelin. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160(2):121–126, 2006.

    Article  CAS  PubMed  Google Scholar 

  4. Chang, J. S., K. L. Chang, D. F. Hwang, and Z. L. Kong. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6):2064–2068, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, C., K. H. Muller, K. K. Koziol, J. N. Skepper, P. A. Midgley, M. E. Welland, and A. E. Porter. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25):4152–4160, 2009.

    Article  CAS  PubMed  Google Scholar 

  6. Colognato, H., and P. D. Yurchenco. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218(2):213–234, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Cui, D. X., F. R. Tian, C. S. Ozkan, M. Wang, and H. J. Gao. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155(1):73–85, 2005.

    Article  CAS  PubMed  Google Scholar 

  8. Ding, L., J. Stilwell, T. Zhang, O. Elboudwarej, H. Jiang, J. P. Selegue, P. A. Cooke, J. W. Gray, and F. F. Chen. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 5(12):2448–2464, 2005.

    Article  CAS  PubMed  Google Scholar 

  9. Even-Ram, S., and K. M. Yamada. Cell migration in 3D matrix. Curr. Opin. Cell. Biol. 17(5):524–532, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Fujimoto, L. M., R. Roth, J. E. Heuser, and S. L. Schmid. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1(2):161–171, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Gao, H. J., Y. Kong, and D. X. Cui. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3(4):471–473, 2003.

    Article  CAS  Google Scholar 

  12. Gotlieb, A. I. The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicol. Pathol. 18(4 Pt 1):603–617, 1990.

    CAS  PubMed  Google Scholar 

  13. Gupta, A. K., M. Gupta, S. J. Yarwood, and A. S. Curtis. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J. Control Rel. 95(2):197–207, 2004.

    Article  CAS  Google Scholar 

  14. Hafner, J. H., C. L. Cheung, A. T. Woolley, and C. M. Lieber. Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77(1):73–110, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Hu, H., Y. Ni, S. K. Mandal, V. Montana, B. Zhao, R. C. Haddon, and V. Parpura. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 109(10):4285–4289, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Iijima, S. Helical microtubules of graphitic carbon. Nature 354:56–58, 1991.

    Article  CAS  Google Scholar 

  17. Jia, G., H. F. Wang, L. Yan, X. Wang, R. J. Pei, T. Yan, Y. L. Zhao, and X. B. Guo. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39(5):1378–1383, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Kagan, V. E., Y. Y. Tyurina, V. A. Tyurin, N. V. Konduru, A. I. Potapovich, A. N. Osipov, E. R. Kisin, D. Schwegler-Berry, R. Mercer, V. Castranova, and A. A. Shvedova. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol. Lett. 165(1):88–100, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Kaiser, J. P., P. Wick, P. Manser, P. Spohn, and A. Bruinink. Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J. Mater. Sci. 19(4):1523–1527, 2008.

    CAS  Google Scholar 

  20. Kaiser, J. P., H. F. Krug, and P. Wick. Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology? Nanomedicine 4(1):57–63, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Kam, N. W., and H. Dai. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16):6021–6026, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Kisin, E. R., A. R. Murray, M. J. Keane, X. C. Shi, D. Schwegler-Berry, O. Gorelik, S. Arepalli, V. Castranova, W. E. Wallace, V. E. Kagan, and A. A. Shvedova. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J. Toxicol. Environ. Health A 70(24):2071–2079, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Kostarelos, K., L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J. P. Briand, S. Muller, M. Prato, and A. Bianco. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2):108–113, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Laaksonen, T., H. Santos, H. Vihola, J. Salonen, J. Riikonen, T. Heikkila, L. Peltonen, N. Kurnar, D. Y. Murzin, V. P. Lehto, and J. Hirvonent. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20(12):1913–1918, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y., X. B. Zhang, X. Y. Tao, J. M. Xu, W. Z. Huang, J. H. Luo, Z. Q. Luo, T. Li, F. Liu, Y. Bao, and H. J. Geise. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43(2):295–301, 2005.

    Article  CAS  Google Scholar 

  26. Manna, S. K., S. Sarkar, J. Barr, K. Wise, E. V. Barrera, O. Jejelowo, A. C. Rice-Ficht, and G. T. Ramesh. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 5(9):1676–1684, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Mao, Z. W., B. Wang, L. Ma, C. Y. Gao, and J. C. Shen. The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles. Nanomedicine 3(3):215–223, 2007.

    CAS  PubMed  Google Scholar 

  28. Monteiro-Riviere, N. A., and A. O. Inman. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6):1070–1078, 2006.

    Article  CAS  Google Scholar 

  29. Monteiro-Riviere, N. A., A. O. Inman, Y. Y. Wang, and R. J. Nemanich. Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomedicine 1(4):293–299, 2005.

    CAS  PubMed  Google Scholar 

  30. Oberlin, A., M. Endo, and T. Koyama. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3):335–349, 1976.

    Article  CAS  Google Scholar 

  31. Oh, J. M., S. J. Choi, S. T. Kim, and J. H. Choy. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug. Chem. 17(6):1411–1417, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Pan, Z., W. Lee, L. Slutsky, R. A. Clark, N. Pernodet, and M. H. Rafailovich. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5(4):511–520, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Pankov, R., and K. M. Yamada. Fibronectin at a glance. J. Cell. Sci. 115(20):3861–3863, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Pantarotto, D., R. Singh, D. McCarthy, M. Erhardt, J. P. Briand, M. Prato, K. Kostarelos, and A. Bianco. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43(39):5242–5246, 2004.

    Article  CAS  Google Scholar 

  35. Patlolla, A., B. Patlolla, and P. Tchounwou. Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol. Cell Biochem. 331:207–214, 2009.

    Article  Google Scholar 

  36. Pernodet, N., X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, and M. Rafailovich. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6):766–773, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Raja, P. M., J. Connolley, G. P. Ganesan, L. Ci, P. M. Ajayan, O. Nalamasu, and D. M. Thompson. Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol. Lett. 169(1):51–63, 2007.

    Article  CAS  PubMed  Google Scholar 

  38. Reddy, A. R., Y. N. Reddy, D. R. Krishna, and V. Himabindu. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 272(1–3):11–16, 2010.

    Article  CAS  PubMed  Google Scholar 

  39. Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302(5651):1704–1709, 2003.

    Article  CAS  PubMed  Google Scholar 

  40. Sayes, C. M., F. Liang, J. L. Hudson, J. Mendez, W. Guo, J. M. Beach, V. C. Moore, C. D. Doyle, J. L. West, W. E. Billups, K. D. Ausman, and V. L. Colvin. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161(2):135–142, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Schneider, M., F. Stracke, S. Hansen, and U. F. Schaefer. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinology 1(4):197–206, 2009.

    Article  CAS  Google Scholar 

  42. Shi, H., Y. Huang, H. Zhou, X. Song, S. Yuan, Y. Fu, and Y. Luo. Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110(8):2899–2906, 2007.

    Article  CAS  PubMed  Google Scholar 

  43. Small, J. V., T. Stradal, E. Vignal, and K. Rottner. The lamellipodium: where motility begins. Trends Cell Biol. 12(3):112–120, 2002.

    Article  CAS  PubMed  Google Scholar 

  44. Stadelmann, W. K., A. G. Digenis, and G. R. Tobin. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg. 176(2A Suppl):26S–38S, 1998.

    Article  CAS  PubMed  Google Scholar 

  45. Tabet, L., C. Bussy, N. Amara, A. Setyan, A. Grodet, M. J. Rossi, J. C. Pairon, J. Boczkowski, and S. Lanone. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health A 72(2):60–73, 2009.

    Article  CAS  PubMed  Google Scholar 

  46. Tian, F. R., D. X. Cui, H. Schwarz, G. G. Estrada, and H. Kobayashi. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20(7):1202–1212, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Varedi, M., A. Ghahary, P. G. Scott, and E. E. Tredget. Cytoskeleton regulates expression of genes for transforming growth factor-beta 1 and extracellular matrix proteins in dermal fibroblasts. J. Cell Physiol. 172(2):192–199, 1997.

    Article  CAS  PubMed  Google Scholar 

  48. Wehrle-Haller, B., and B. A. Imhof. Actin, microtubules and focal adhesion dynamics during cell migration. Int. J. Biochem. Cell Biol. 35(1):39–50, 2003.

    Article  CAS  PubMed  Google Scholar 

  49. Xu, L. H., X. Yang, R. J. Craven, and W. G. Cance. The COOH-terminal domain of the focal adhesion kinase induces loss of adhesion and cell death in human tumor cells. Cell Growth Differ. 9(12):999–1005, 1998.

    CAS  PubMed  Google Scholar 

  50. Zhao, B., H. Hu, K. M. Swadhin, and R. C. Haddon. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17(12):3235–3241, 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Natural Science Foundation of China (50903069, 50873087), Zhejiang Provincial Natural Science Foundation of China (Z4090177) and Frame Work Program 7 of European Commission (FP7-NMP-SMALL-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Gao.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, B., Meng, X. et al. Influences of Acid-Treated Multiwalled Carbon Nanotubes on Fibroblasts: Proliferation, Adhesion, Migration, and Wound Healing. Ann Biomed Eng 39, 414–426 (2011). https://doi.org/10.1007/s10439-010-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0151-y

Keywords

Navigation