Skip to main content
Log in

Electromagnetically Controlled Biological Assembly of Aligned Bacterial Cellulose Nanofibers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We have developed a new biofabrication process in which the precise control of bacterial motion is used to fabricate customizable networks of cellulose nanofibrils. This article describes how the motion of Acetobacter xylinum can be controlled by electric fields while the bacteria simultaneously produce nanocellulose, resulting in networks with aligned fibers. Since the electrolysis of water due to the application of electric fields produces the oxygen in the culture media far from the liquid–air boundary, aerobic cellulose production in 3D structures is readily achievable. Five separate sets of experiments were conducted to demonstrate the assembly of nanocellulose by A. xylinum in the presence of electric fields in micro- and macro-environments. This study demonstrates a new concept of bottom up material synthesis by the control of a biological assembly process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Archer, S., T. T. Li, A. T. Evans, S. T. Britland, and H. Morgan. Cell reactions to dielectrophoretic manipulation. Biochem. Biophys. Res. Commun. 257:687–698, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Backdahl, H., G. Helenius, A. Bodin, U. Nannmark, B. R. Johansson, B. Risberg, and P. Gatenholm. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149, 2006.

    Article  PubMed  Google Scholar 

  3. Barz, D. P. J., and P. Ehrhard. Model and verification of electrokinetic flow and transport in a micro-electrophoresis device. Lab Chip 5:949–958, 2005.

    Article  CAS  PubMed  Google Scholar 

  4. Berg, H. Possibilities and problems of low-frequency weak electromagnetic-fields in cell biology. Bioelectrochem. Bioenerg. 38:153–159, 1995.

    Article  CAS  Google Scholar 

  5. Bodin, A., H. Backdahl, H. Fink, L. Gustafsson, B. Risberg, and P. Gatenholm. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol. Bioeng. 97:425–434, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Bodin, A., S. Concaro, M. Brittberg, and P. Gatenholm. Bacterial cellulose as a potential meniscus implant. J. Tissue Eng. Regen. Med. 1:406–408, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Borzani, W., and S. J. Desouza. Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid-media. Biotechnol. Lett. 17:1271–1272, 1995.

    Article  CAS  Google Scholar 

  8. Brown, R. M., C. Haigler, and K. Cooper. Experimental induction of altered non-microfibrillar cellulose. Science 218:1141–1142, 1982.

    Article  PubMed  Google Scholar 

  9. Brown, R. M., J. H. M. Willison, and C. L. Richardson. Cellulose biosynthesis in Acetobacter xylinum—visualization of site of synthesis and direct measurement of invivo process. Proc. Natl Acad. Sci. USA 73:4565–4569, 1976.

    Article  CAS  PubMed  Google Scholar 

  10. Cellini, L., R. Grande, E. Di Campli, S. Di Bartolomeo, M. Di Giulio, I. Robuffo, O. Trubiani, and M. A. Mariggio. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 29:302–311, 2008.

    Article  CAS  PubMed  Google Scholar 

  11. Czaja, W., D. Romanovicz, and R. M. Brown. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411, 2004.

    Article  CAS  Google Scholar 

  12. Davalos, R. V., G. J. McGraw, T. I. Wallow, A. M. Morales, K. L. Krafcik, Y. Fintschenko, E. B. Cummings, and B. A. Simmons. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators. Anal. Bioanal. Chem. 390:847–855, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Dimitrov, D., H. Isoda, and T. Maekawa. Proteomic Analysis of Changes in Excitable and Non-Excitable Cells Exposed to DC Electric Fields of Physiological Strength. Dordrecht: Springer, 2003.

  14. El-Ali, J., P. K. Sorger, and K. F. Jensen. Cells on chips. Nature 442:403–411, 2006. doi:10.1038/nature05063.

    Google Scholar 

  15. Fojt, L., P. Klapetek, L. Strasak, and V. Vetterl. 50 Hz magnetic field effect on the morphology of bacteria. Micron 40:918–922, 2009.

    Google Scholar 

  16. Fuh, C. B. Split-flow thin fractionation. Anal. Chem. 72:266A–271A, 2000.

    CAS  PubMed  Google Scholar 

  17. Fuh, C. B., and S. Y. Chen. Magnetic split-flow thin fractionation of magnetically susceptible particles. J. Chromatogr. A 857:193–204, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Gascoyne, P. R. C., J. V. Vykoukal, J. A. Schwartz, T. J. Anderson, D. M. Vykoukal, K. W. Current, C. McConaghy, F. F. Becker, and C. Andrews. Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Giddings, J. C., and S. L. Brantley. Shear field-flow fractionation—theoretical basis of a new, highly selective technique. Sep. Sci. Technol. 19:631–651, 1984.

    Article  CAS  Google Scholar 

  20. Helenius, G., H. Backdahl, A. Bodin, U. Nannmark, P. Gatenholm, and B. Risberg. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A 76A:431–438, 2006.

    Article  CAS  Google Scholar 

  21. Huang, R., L. Peng, and L. Hertz. Effects of a low-voltage static electric field on energy metabolism in astrocytes. Bioelectromagnetics 18:77–80, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Ji, W. J., H. M. Huang, A. H. Deng, and C. Y. Pan. Effects of static magnetic fields on Escherichia coli. Micron 40:894–898, 2009.

    Article  PubMed  Google Scholar 

  23. Kang, Y. J., and D. Q. Li. Electrokinetic motion of particles and cells in microchannels. Microfluid. Nanofluid. 6:431–460, 2009.

    Article  CAS  Google Scholar 

  24. Klemm, D., D. Schumann, U. Udhardt, and S. Marsch. Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26:1561–1603, 2001.

    Article  CAS  Google Scholar 

  25. Kolin, A. An electromagnetokinetic phenomenon involving migration of neutral particles. Science 117:134–137, 1953.

    Article  CAS  PubMed  Google Scholar 

  26. Kolin, A., and R. T. Kado. Fractionation of cell suspensions in an electromagnetic force field. Nature 182:510–512, 1958.

    Article  CAS  PubMed  Google Scholar 

  27. Kondo, T., M. Nojiri, Y. Hishikawa, E. Togawa, D. Romanovicz, and R. M. Brown. Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. Proc. Natl Acad. Sci. USA 99:14008–14013, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Krystynowicz, A., W. Czaja, A. Wiktorowska-Jezierska, M. Goncalves-Miskiewicz, M. Turkiewicz, and S. Bielecki. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 29:189–195, 2002.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S. W., C. B. Mao, C. E. Flynn, and A. M. Belcher. Ordering of quantum dots using genetically engineered viruses. Science 296:892–895, 2002.

    Google Scholar 

  30. Nalbandian, R. M., R. E. Michel, and I. Mader. Paramagnetism of human serum proteins demonstrated by two-stage electromagnetophoresis. Cell. Mol. Life Sci. 24:1006–1007, 1968.

    Article  CAS  Google Scholar 

  31. Pohl, H. A. The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22:869–871, 1951. doi:10.1063/1.1700065.

    Google Scholar 

  32. Pohl, H. A., and C. E. Plymale. Continuous separations of suspensions by nonuniform electric fields in liquid dielectrics. J. Electrochem. Soc. 107:390–396, 1960. doi:10.1149/1.2427706.

    Google Scholar 

  33. Putra, A., A. Kakugo, H. Furukawa, J. P. Gong, and Y. Osada. Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891, 2008.

    Article  CAS  Google Scholar 

  34. Putra, A., A. Kakugo, H. Furukawa, J. P. Gong, Y. Osada, T. Uemura, and M. Yamamoto. Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym. J. 40:137–142, 2008.

    Article  CAS  Google Scholar 

  35. Shafiee, H., J. L. Caldwell, M. B. Sano, and R. V. Davalos. Contactless dielectrophoresis: a new technique for cell manipulation. Biomed. Microdev. 11:997–1006, 2009.

    Article  CAS  Google Scholar 

  36. Shafiee, H., M. B. Sano, E. A. Henslee, J. L. Caldwell, and R. V. Davalos. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10:438–445, 2010.

    Article  CAS  PubMed  Google Scholar 

  37. Simmons, B. A., G. J. McGraw, R. V. Davalos, G. J. Fiechtner, Y. Fintschenko, and E. B. Cummings. The development of polymeric devices as dielectrophoretic separators and concentrators. MRS Bull. 31:120–124, 2006.

    CAS  Google Scholar 

  38. Son, H. J., H. G. Kim, K. K. Kim, H. S. Kim, Y. G. Kim, and S. J. Lee. Increased production of bacterial cellulose by Acetobacter sp V6 in synthetic media under shaking culture conditions. Bioresour. Technol. 86:215–219, 2003.

    Article  PubMed  Google Scholar 

  39. Stevens, M. M., and J. H. George. Exploring and engineering the cell surface interface. Science 310:1135–1138, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Svensson, A., E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gatenholm. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Szot, C. S., C. F. Buchanan, P. Gatenholm, M. N. Rylander, and J. W. Freeman. Investigation of cancer cell behavior on nanofibrous scaffolds. Mater. Sci. Eng. C, 2009. doi:10.1016/j.msec.2009.12.005

  42. Tandon, V., S. K. Bhagavatula, W. C. Nelson, and B. J. Kirby. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 29:1092–1101, 2008.

    Article  CAS  PubMed  Google Scholar 

  43. Uraki, Y., J. Nemoto, H. Otsuka, Y. Tamai, J. Sugiyama, T. Kishimoto, M. Ubukata, H. Yabu, M. Tanaka, and M. Shimomura. Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohyd. Polym. 69:1–6, 2007.

    Article  CAS  Google Scholar 

  44. Verschuren, P. G., T. D. Cardona, M. J. R. Nout, K. D. De Gooijer, and J. C. Van den Heuvel. Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles. J. Biosci. Bioeng. 89:414–419, 2000.

    Article  CAS  PubMed  Google Scholar 

  45. Vickrey, T. M., and J. A. Garciaramirez. Magnetic field-flow fractionation—theoretical basis. Sep. Sci. Technol. 15:1297–1304, 1980.

    Article  CAS  Google Scholar 

  46. Wang, G., X. F. Chen, X. D. Shi, L. J. Yu, B. F. Liu, and G. Yang. Bio-fabrication of patterned cellulose nano-fibers. In: International Conference on Multifunctional Materials and Structures, edited by A. K. T. Lau (Hong Kong, People’s Republic of China, 2008), pp. 1359–1362.

  47. Watanabe, K., M. Tabuchi, Y. Morinaga, and F. Yoshinaga. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200, 1998.

    Article  CAS  Google Scholar 

  48. Wu, L. Q., and G. F. Payne. Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol. 22:593–599, 2004.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshinaga, F., N. Tonouchi, and K. Watanabe. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem. 61:219–224, 1997.

    Article  CAS  Google Scholar 

  50. Zareie, M. H., H. Ma, B. W. Reed, A. K. Y. Jen, and M. Sarikaya. Controlled assembly of conducting monomers for molecular electronics. Nano Lett. 3:139–142, 2003.

    Google Scholar 

  51. Zhou, H., T. X. Fan, T. Han, X. F. Li, J. Ding, D. Zhang, Q. X. Guo, and H. Ogawa. Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. Nanotechnology 20, 2009.

  52. Zimmermann, K. A., J. M. LeBlanc, K. T. Sheets, R. W. Fox, and P. Gatenholm. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater. Sci. Eng. C, 2009.

Download references

Acknowledgments

We acknowledge the Institute for Critical Technologies and Applied Science (ICTAS) at Virginia Tech for financial support and the NCFL at ICTAS for support with imaging. We thank Dr. Aase Bodin for introducing Mike Sano to the bacterial cellulose field as well as Jaclyn Brennan, Phillip Zellner, Hadi Shafiee for experimental assistance. We also acknowledge Nathan Petersen and Michelle Davalos for assistance with editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael V. Davalos.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, M.B., Rojas, A.D., Gatenholm, P. et al. Electromagnetically Controlled Biological Assembly of Aligned Bacterial Cellulose Nanofibers. Ann Biomed Eng 38, 2475–2484 (2010). https://doi.org/10.1007/s10439-010-9999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9999-0

Keywords

Navigation