Skip to main content

Advertisement

Log in

Peripheral Nerve Repair Through Multi-Luminal Biosynthetic Implants

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Peripheral nerve damage is routinely repaired by autogenic nerve grafting, often leading to less than optimal functional recovery at the expense of healthy donor nerves. Alternative repair strategies use tubular scaffolds to guide the regeneration of damaged nerves, but despite the progress made on improved structural materials for the nerve tubes, functional recovery remains incomplete. We developed a biosynthetic nerve implant (BNI) consisting of a hydrogel-based transparent multichannel scaffold with luminar collagen matrix as a 3-D substrate for nerve repair. Using a rat sciatic nerve injury model we showed axonal regeneration through the BNI to be histologically comparable to the autologous nerve repair. At 10 weeks post-injury, nerve defects repaired with collagen-filled, single lumen tubes formed single nerve cables, while animals that received the multi-luminal BNIs showed multiple nerve cables and the formation of a perineurial-like layer within the available microchannels. Total numbers of myelinated and unmyelinated axons in the BNI were increased 3-fold and 30%, respectively, compared to collagen tubes. The recovery of reflexive movement confirmed the functional regeneration of both motor and sensory neurons. This study supports the use of multi-luminal BNIs as a viable alternative to autografts in the repair of nerve gap injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Al-Majed, A. A., C. M. Neumann, T. M. Brushart, et al. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20(7):2602–2608, 2000.

    PubMed  CAS  Google Scholar 

  2. Asensio-Pinilla, E., E. Udina, J. Jaramillo, et al. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp. Neurol. 219(1):258–265, 2009.

    Article  PubMed  Google Scholar 

  3. Boyd, J. G., and T. Gordon. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp. Neurol. 183(2):610–619, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Brushart, T. M. Preferential reinnervation of motor nerves by regenerating motor axons. J. Neurosci. 8(3):1026–1031, 1988.

    PubMed  CAS  Google Scholar 

  5. Bunge, M. B., and D. D. Pearse. Transplantation strategies to promote repair of the injured spinal cord. J. Rehabil. Res. Dev. 40(4 Suppl 1):55–62, 2003.

    Article  PubMed  Google Scholar 

  6. Cao, Q., Xu XM, W. H. Devries, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J. Neurosci. 25(30):6947–6957, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, M. B., F. Zhang, and W. C. Lineaweaver. Luminal fillers in nerve conduits for peripheral nerve repair. Ann. Plast. Surg. 57(4):462–471, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Dahlin, L. B., and G. Lundborg. Use of tubes in peripheral nerve repair. Neurosurg. Clin. N. Am. 12(2):341–352, 2001.

    PubMed  CAS  Google Scholar 

  9. de Paiva, A., F. A. Meunier, J. Molgo, et al. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl Acad. Sci. USA 96(6):3200–3205, 1999.

    Article  PubMed  Google Scholar 

  10. de Ruiter, G. C., M. J. Malessy, A. O. Alaid, et al. Misdirection of regenerating motor axons after nerve injury and repair in the rat sciatic nerve model. Exp. Neurol. 211(2):339–350, 2008.

    Article  PubMed  Google Scholar 

  11. de Ruiter, G. C., M. J. Malessy, M. J. Yaszemski, et al. Designing ideal conduits for peripheral nerve repair. Neurosurg. Focus 26(2):E5, 2009.

    Article  PubMed  Google Scholar 

  12. de Ruiter, G. C., R. J. Spinner, M. J. A. Malessy, et al. Accuracy of motor axon regeneration across autograft, single-lumen, and multichannel poly(lactic-co-glycolic acid) nerve tubes. Neurosurgery 63(1):144–155, 2008. doi:10.1227/01.NEU.0000319521.28683.75.

    Article  PubMed  Google Scholar 

  13. English, A. W., D. Cucoranu, A. Mulligan, et al. Treadmill training enhances axon regeneration in injured mouse peripheral nerves without increased loss of topographic specificity. J. Comp. Neurol. 517(2):245–255, 2009.

    Article  PubMed  Google Scholar 

  14. Evans, G. R. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat. Rec. 263(4):396–404, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Cossio, S., A. Leon-Mateos, F. G. Sampedro, et al. Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast. Reconstr. Surg. 120(5):1161–1169, 2007.

    Article  PubMed  CAS  Google Scholar 

  16. Galvan-Garcia, P., E. W. Keefer, F. Yang, et al. Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J. Biomater. Sci. Polym. Ed. 18(10):1245–1261, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Ghalib, N., L. Houst’ava, P. Haninec, et al. Morphometric analysis of early regeneration of motor axons through motor and cutaneous nerve grafts. Ann. Anat. 183(4):363–368, 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Gordon, T., O. Sulaiman, and J. G. Boyd. Experimental strategies to promote functional recovery after peripheral nerve injuries. J. Peripher. Nerv. Syst. 8(4):236–250, 2003.

    Article  PubMed  Google Scholar 

  19. Hadlock, T., J. Elisseeff, R. Langer, et al. A tissue-engineered conduit for peripheral nerve repair. Arch. Otolaryngol. Head Neck Surg. 124(10):1081–1086, 1998.

    PubMed  CAS  Google Scholar 

  20. Hadlock, T., C. Sundback, D. Hunter, et al. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 6(2):119–127, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Hamers, F. P., A. J. Lankhorst, T. J. van Laar, et al. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J. Neurotrauma. 18(2):187–201, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Hill, C. E., L. D. Moon, P. M. Wood, et al. Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 53(3):338–343, 2006.

    Article  PubMed  Google Scholar 

  23. Jacobson, S., and L. Guth. An electrophysiological study of the early stages of peripheral nerve regeneration. Exp. Neurol. 11:48–60, 1965.

    Article  PubMed  CAS  Google Scholar 

  24. Kline, D. G., D. Kim, R. Midha, et al. Management and results of sciatic nerve injuries: a 24-year experience. J. Neurosurg. 89(1):13–23, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Mackinnon, S. E., and A. L. Dellon. A study of nerve regeneration across synthetic (Maxon) and biologic (collagen) nerve conduits for nerve gaps up to 5 cm in the primate. J. Reconstr. Microsurg. 6(2):117–121, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Madison, R. D., S. J. Archibald, R. Lacin, et al. Factors contributing to preferential motor reinnervation in the primate peripheral nervous system. J. Neurosci. 19(24):11007–11016, 1999.

    PubMed  CAS  Google Scholar 

  27. Martini, R. Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J. Neurocytol. 23(1):1–28, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. McGrath, A. M., L. N. Novikova, L. N. Novikov, et al. BD PuraMatrix peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res Bull. 83(5):207–213, 2010.

    Article  PubMed  CAS  Google Scholar 

  29. Meek, M. F., and K. Jansen. Two years after in vivo implantation of poly(DL-lactide-epsilon-caprolactone) nerve guides: has the material finally resorbed? J. Biomed. Mater. Res. A. 89(3):734–738, 2009.

    PubMed  Google Scholar 

  30. Mi, R., W. Chen, and A. Hoke. Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc. Natl Acad. Sci. USA 104(11):4664–4669, 2007.

    Article  PubMed  CAS  Google Scholar 

  31. Moore, M. J., J. A. Friedman, E. B. Lewellyn, et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27(3):419–429, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Moore, A. M., R. Kasukurthi, C. K. Magill, et al. Limitations of conduits in peripheral nerve repairs. Hand 4(2):180–186, 2009.

    Article  PubMed  Google Scholar 

  33. Mosahebi, A., M. Wiberg, and G. Terenghi. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng. 9(2):209–218, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Ngo, T. T., P. J. Waggoner, A. A. Romero, et al. Poly(L-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. J. Neurosci. Res. 72(2):227–238, 2003.

    Article  PubMed  CAS  Google Scholar 

  35. Nilsson, A., L. Dahlin, G. Lundborg, et al. Graft repair of a peripheral nerve without the sacrifice of a healthy donor nerve by the use of acutely dissociated autologous Schwann cells. Scand. J. Plast. Reconstr. Surg. Hand Surg. 39(1):1–6, 2005.

    Article  PubMed  Google Scholar 

  36. Oh, S. H., J. H. Kim, K. S. Song, et al. Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials 29(11):1601–1609, 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Ray, W. Z., and S. E. Mackinnon. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp. Neurol. 223(1):77–85, 2009.

    Article  PubMed  Google Scholar 

  38. Romero, M. I., N. Rangappa, L. Li, et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J. Neurosci. 20(12):4435–4445, 2000.

    PubMed  CAS  Google Scholar 

  39. Romero, M. I., and G. M. Smith. Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade. Gene Ther. 5(12):1612–1621, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. Rosson, G. D., E. H. Williams, and A. L. Dellon. Motor nerve regeneration across a conduit. Microsurgery 29(2):107–114, 2009.

    Article  PubMed  Google Scholar 

  41. Sabatier, M. J., N. Redmon, G. Schwartz, et al. Treadmill training promotes axon regeneration in injured peripheral nerves. Exp. Neurol. 211(2):489–493, 2008.

    Article  PubMed  CAS  Google Scholar 

  42. Scarlato, M., J. Ara, P. Bannerman, et al. Induction of neuropilins-1 and -2 and their ligands, Sema3A, Sema3F, and VEGF, during Wallerian degeneration in the peripheral nervous system. Exp. Neurol. 183(2):489–498, 2003.

    Article  PubMed  CAS  Google Scholar 

  43. Schachner, M., R. Martini, H. Hall, et al. Functions of the L2/HNK-1 carbohydrate in the nervous system. Prog. Brain Res. 105:183–188, 1995.

    Article  PubMed  CAS  Google Scholar 

  44. Schmalbruch, H. Fiber composition of the rat sciatic nerve. Anat. Rec. 215(1):71–81, 1986.

    Article  PubMed  CAS  Google Scholar 

  45. Schmidt, C. E., and J. B. Leach. Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5:293–347, 2003.

    Article  PubMed  CAS  Google Scholar 

  46. Seckel, B. R., T. H. Chiu, E. Nyilas, et al. Nerve regeneration through synthetic biodegradable nerve guides: regulation by the target organ. Plast. Reconstr. Surg. 74(2):173–181, 1984.

    Article  PubMed  CAS  Google Scholar 

  47. Selmi, T. A., P. Verdonk, P. Chambat, et al. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J. Bone Joint Surg. Br. 90(5):597–604, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Stokols, S., and M. H. Tuszynski. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27(3):443–451, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki, K., Y. Suzuki, M. Tanihara, et al. Reconstruction of rat peripheral nerve gap without sutures using freeze-dried alginate gel. J. Biomed. Mater. Res. 49(4):528–533, 2000.

    Article  PubMed  CAS  Google Scholar 

  50. Varon, S., S. D. Skaper, and M. Manthorpe. Trophic activities for dorsal root and sympathetic ganglionic neurons in media conditioned by Schwann and other peripheral cells. Brain Res. 227(1):73–87, 1981.

    PubMed  CAS  Google Scholar 

  51. Wallquist, W., M. Patarroyo, S. Thams, et al. Laminin chains in rat and human peripheral nerve: distribution and regulation during development and after axonal injury. J. Comp. Neurol. 454(3):284–293, 2002.

    Article  PubMed  CAS  Google Scholar 

  52. Weber, R. A., W. C. Breidenbach, R. E. Brown, et al. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast. Reconstr. Surg. 106(5):1036–1045, 2000; (discussion 1046–1048).

    Article  PubMed  CAS  Google Scholar 

  53. Whitlock, E. L., S. H. Tuffaha, J. P. Luciano, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 39(6):787–799, 2009.

    Article  PubMed  CAS  Google Scholar 

  54. Wood, M. D., D. Hunter, S. E. Mackinnon, et al. Heparin-binding-affinity-based delivery systems releasing nerve growth factor enhance sciatic nerve regeneration. J. Biomater. Sci. Polym. Ed. 21(6):771–787, 2010.

    Article  PubMed  CAS  Google Scholar 

  55. Yang, Y., L. De Laporte, C. B. Rives, et al. Neurotrophin releasing single and multiple lumen nerve conduits. J. Control. Release 104(3):433–446, 2005.

    Article  PubMed  CAS  Google Scholar 

  56. Yoshii, S., S. Ito, M. Shima, et al. Functional restoration of rabbit spinal cord using collagen-filament scaffold. J. Tissue Eng. Regen. Med. 3(1):19–25, 2008.

    Article  Google Scholar 

  57. Yoshii, S., M. Oka, M. Shima, et al. 30 mm regeneration of rat sciatic nerve along collagen filaments. Brain Res. 949(1–2):202–208, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Galvan-Garcia, S. Pierce, C. Smith, L. Watterkote, D. Muirhead, M. Allen, R. Sharma, and R. Daniel for technical assistance. This work was funded by the Texas Higher Education Coordinating Board and Texas Scottish Rite Hospital for Children Intramural Grants (MIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Romero.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tansey, K.E., Seifert, J.L., Botterman, B. et al. Peripheral Nerve Repair Through Multi-Luminal Biosynthetic Implants. Ann Biomed Eng 39, 1815–1828 (2011). https://doi.org/10.1007/s10439-011-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0277-6

Keywords

Navigation