Skip to main content
Log in

Local Strain Distribution in Real Three-Dimensional Alveolar Geometries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brewer, K., H. Sakai, A. M. Alencar, A. Majumdar, S. P. Arold, K. R. Lutchen, E. P. Ingenito, and B. Suki. Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment. J. Appl. Physiol. 95(5):1926–1936, 2003.

    PubMed  Google Scholar 

  2. Cavalcante, F. S., S. Ito, H. Sakai, A. M. Alencar, M. P. Almeida, I. S. Andrade, A. Majumdar, E. P. Ingenito, and B. Suki. Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. J. Appl. Physiol. 98(2):672–679, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. Chandel, N. S., and J. I. Sznajder. Stretching the lung and programmed cell death. Am. J. Physiol. Lung Cell Mol. Physiol. 279(6):1003–1004, 2000.

    Google Scholar 

  4. Comerford, A., C. Förster, and W. A. Wall. Structured tree impedance outflow boundary conditions for 3D lung simulations. J. Biomech. Eng. 132(8):081002, 2010.

    Article  PubMed  Google Scholar 

  5. Copland, I. B., and M. Post. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J. Cell. Physiol. 210(1):133–143, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Dassow, C., L. Wiechert, C. Martin, S. Schumann, G. Müller-Newen, O. Pack, J. Guttmann, W. A. Wall, and S. Uhlig. Biaxial distension of precision-cut lung slices. J. Appl. Physiol. 108:713–721, 2010.

    Article  PubMed  CAS  Google Scholar 

  7. Denny, E., and R. C. Schroter. A model of non-uniform lung parenchyma distortion. J. Biomech. 39(4):652–663, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. DiRocco, J. D., L. A. Pavone, D. E. Carney, Ch. J. Lutz, L. A. Gatto, S. K. Landas, and G. F. Nieman. Dynamic alveolar mechanics in four models of lung injury. Intensive Care Med 32(1):140–148, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Dos Santos, C. C., and A. S. Slutsky. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J. Appl. Physiol. 89(4):1645–1655, 2000.

    PubMed  CAS  Google Scholar 

  10. Dos Santos, C. C., and A. S. Slutsky. The contribution of biophysical lung injury to the development of biotrauma. Annu. Rev. Physiol. 68:585–618, 2006.

    Article  PubMed  CAS  Google Scholar 

  11. Gee, M. W., C. R. Dohrmann, S. W. Key, and W. A. Wall. A uniform nodal strain tetrahedron with isochoric stabilization. Int. J. Numer. Methods Eng. 78(4):429–443, 2009.

    Article  Google Scholar 

  12. Gefen, A., D. Elad, and R. J. Shiner. Analysis of stress distribution in the alveolar septa of normal and simulated emphysematic lungs. J. Biomech. 32(9):891–897, 1999.

    Article  PubMed  CAS  Google Scholar 

  13. Hintermüller, C., F. Marone, A. Isenegger, and M. Stampanoni. Image processing pipeline for synchrotron-radiation-based tomographic microscopy. J. Synchrotron Radiat. 17(4):550–559, 2010.

    Article  PubMed  Google Scholar 

  14. Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. New York: Wiley, 2001.

    Google Scholar 

  15. Karakaplan, A. D., M. P. Bieniek, and R. Skalak. A mathematical model of lung parenchyma. J. Biomech. Eng. 102(2):124–136, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Kowe, R., R. C. Schroter, F. L. Matthews, and D. Hitchings. Analysis of elastic and surface tension effects in the lung alveolus using finite element methods. J. Biomech. 19(7):541–549, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Maksym, G. N., J. J. Fredberg, and J. H. T. Bates. Force heterogeneity in a two-dimensional network model of lung tissue elasticity. J. Appl. Physiol. 85:1223–1229, 1998.

    PubMed  CAS  Google Scholar 

  18. Martin, C., S. Uhlig, and V. Ullrich. Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur. Respir. J. 9(12):2479–2487, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Ning, Q., and X. Wang. Response of alveolar type ii epithelial cells to mechanical stretch and lipopolysaccharide. Respiration 74(5):579–585, 2007.

    Article  PubMed  CAS  Google Scholar 

  20. Perlman, C. E., and J. Bhattacharya. Alveolar expansion imaged by optical sectioning microscopy. J. Appl. Physiol. 103:1037–1044, 2007.

    Article  PubMed  Google Scholar 

  21. Rausch, S. M. K., C. Martin, P. B. Bornemann, S. Uhlig, and W. A. Wall. Material model of lung parenchyma based on living precision-cut lung slice testing. J. Mech. Behav. Biomed. 4:583–592, 2011.

    Article  CAS  Google Scholar 

  22. Schittny, J. C., and P. H. Burri. Development and Growth of the Lung. Fishman’s Pulmonary Diseases and Disorders. New-York: McGraw-Hill, 2008.

    Google Scholar 

  23. Schittny, J. C., S. I. Mund, and M. Stampanoni. Evidence and structural mechanism for late lung alveolarization. Am. J. Physiol. Lung Cell Mol. Physiol. 294(2):246–254, 2008.

    Article  Google Scholar 

  24. Sobin, S. S., Y. C. Fung, and H. M. Tremer. Collagen and elastin fibers in human pulmonary alveolar walls. J. Appl. Physiol. 64(4):1659–1675, 1988.

    PubMed  CAS  Google Scholar 

  25. Stampanoni, M., A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela. Trends in synchrotron-based tomographic imaging: the SLS experience. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2006.

  26. Suki, B., and J. H. T. Bates. Extracellular matrix mechanics in lung parenchymal diseases. Respir. Physiol. Neurobiol. 163:33–43, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342(18):1301–1308, 2000.

    Article  Google Scholar 

  28. Toshima, M., Y. Ohtani, and O. Ohtani. Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung. Arch. Histol. Cytol. 67(1):31–40, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Tschanz, S. A., A. N. Makanya, B. Haenni, and P. H. Burri Effects of neonatal high-dose short-term glucocorticoid treatment on the lung: a morphologic and morphometric study in the rat. Pediatr. Res. 53(1):72–80, 2003.

    PubMed  CAS  Google Scholar 

  30. Vlahakis, N. E., M. A. Schroeder, A. H. Limper, and R. D. Hubmayr. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am. J. Physiol. 277(1):167–173, 1999.

    Google Scholar 

  31. Wall, W. A., and M. Gee. Baci: A Parallel Multiphysics Simulation Environment. Technical Report, Institute for Computational Mechanics, TUM, 2010.

  32. Wall, W. A., L. Wiechert, A. Comerford, and S. Rausch. Towards a comprehensive computational model for the respiratory system. Int. J. Numer. Methods Biomed. Eng. 26(7):807–827, 2010.

    Google Scholar 

  33. Wiechert, L., and W. A. Wall. A nested dynamic multi-scale approach for 3D problems accounting for micro-scale multi-physics. Comput. Methods Appl. Mech. Eng. 199(21–22):1342–1351, 2010.

    Article  Google Scholar 

  34. Wiechert, L., R. Metzke, and W. A. Wall. Modeling the mechanical behavior of lung tissue at the micro-level. J. Eng. Mech. 135(5):434–438, 2009.

    Article  Google Scholar 

  35. Wilson, T. A., and H. Bachofen. A model for mechanical structure of the alveolar duct. J. Appl. Physiol. 52:1064–1070, 1982.

    PubMed  CAS  Google Scholar 

  36. Yuan, H., E. P. Ingenito, and B. Suki. Dynamic properties of lung parenchyma: mechanical contributions of fiber network and interstitial cells. J. Appl. Physiol. 83(5):1420–1431, 1997 (discussion 1418–9).

    PubMed  CAS  Google Scholar 

  37. Yuan, H., S. Kononov, F. S. Cavalcante, K. R. Lutchen, E. P. Ingenito, and B. Suki. Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J. Appl. Physiol. 89(1):3–14, 2000.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support by the German Science Foundation/Deutsche Forschungsgemeinschaft DFG and the TUM Graduate School is gratefully acknowledged. We also gratefully acknowledge the help of Christian Martin and Stefan Uhlig for providing us with the PCLSs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. K. Rausch or W. A. Wall.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rausch, S.M.K., Haberthür, D., Stampanoni, M. et al. Local Strain Distribution in Real Three-Dimensional Alveolar Geometries. Ann Biomed Eng 39, 2835–2843 (2011). https://doi.org/10.1007/s10439-011-0328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0328-z

Keywords

Navigation