Skip to main content

Advertisement

Log in

Development of a Full Body CAD Dataset for Computational Modeling: A Multi-modality Approach

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to develop full body CAD geometry of a seated 50th percentile male. Model development was based on medical image data acquired for this study, in conjunction with extensive data from the open literature. An individual (height, 174.9 cm, weight, 78.6 ± 0.77 kg, and age 26 years) was enrolled in the study for a period of 4 months. 72 scans across three imaging modalities (CT, MRI, and upright MRI) were collected. The whole-body dataset contains 15,622 images. Over 300 individual components representing human anatomy were generated through segmentation. While the enrolled individual served as a template, segmented data were verified against, or augmented with, data from over 75 literature sources on the average morphology of the human body. Non-Uniform Rational B-Spline (NURBS) surfaces with tangential (G1) continuity were constructed over all the segmented data. The sagittally symmetric model consists of 418 individual components representing bones, muscles, organs, blood vessels, ligaments, tendons, cartilaginous structures, and skin. Length, surface area, and volumes of components germane to crash injury prediction are presented. The total volume (75.7 × 103 cm3) and surface area (1.86 × 102 cm2) of the model closely agree with the literature data. The geometry is intended for subsequent use in nonlinear dynamics solvers, and serves as the foundation of a global effort to develop the next-generation computational human body model for injury prediction and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Andermahr, J., A. Jubel, A. Elsner, J. Johann, A. Prokop, K. E. Rehm, and J. Koebke. Anatomy of the clavicle and the intramedullary nailing of midclavicular fractures. Clin. Anat. 20(1):48–56, 2007.

    Article  PubMed  Google Scholar 

  2. Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. 127(3):364–373, 2005.

    Article  PubMed  Google Scholar 

  3. Ashburner, J., and K. J. Friston. Unified segmentation. NeuroImage 26(3):839–851, 2005.

    Article  PubMed  Google Scholar 

  4. Au, A. G., D. Palathinkal, A. B. Liggins, V. J. Raso, J. Carey, R. G. Lambert, and A. Amirfazli. A NURBS-based technique for subject-specific construction of knee bone geometry. Comput Methods Progr. Biomed. 92(1):20–34, 2008.

    Article  Google Scholar 

  5. Beillas, P., Y. Lafon, and F. W. Smith. The effects of posture and subject-to-subject variations on the position, shape and volume of abdominal and thoracic organs. Stapp Car Crash J. 53:127–154, 2009.

    PubMed  Google Scholar 

  6. Bell, K. L., N. Garrahan, M. Kneissel, N. Loveridge, E. Grau, M. Stanton, and J. Reeve. Cortical and cancellous bone in the human femoral neck: evaluation of an interactive image analysis system. Bone 19(5):541–548, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Blain, H., P. Chavassieux, N. Portero-Muzy, F. Bonnel, F. Canovas, M. Chammas, P. Maury, and P. D. Delmas. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 43(5):862–868, 2008.

    Article  PubMed  CAS  Google Scholar 

  8. Braun, M. J., M. D. Meta, P. Schneider, and C. Reiners. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys. Med. Biol. 43(8):2279–2294, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Burmaster, D. Lognormal distributions for skin area as a function of body weight. Risk Anal. 18(1):27, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Chang, C. Y., J. D. Rupp, N. Kikuchi, and L. W. Schneider. Development of a finite element model to study the effects of muscle forces on knee-thigh-hip injuries in frontal crashes. Stapp Car Crash J. 52:475–504, 2008.

    PubMed  Google Scholar 

  11. Cheng, H., L. Obergefell, and A. Rizer. Generator of body data (GEBOD) manual report, AL/CF-TR-1994-00511. Armstrong Laboratory, Wright Patterson Air Force Base, 1994.

  12. Christensen, R. A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47:762–768, 1980.

    Article  CAS  Google Scholar 

  13. Cohen, Z. A., D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J. Ciaccio, and G. A. Ateshian. Knee cartilage topography, thickness, and contact areas from MRI: in vitro calibration and in vivo measurements. Osteoarthr. Cartilage/OARS, Osteoarthritis Research Society 7(1):95–109, 1999.

    Article  CAS  Google Scholar 

  14. Crowley, J. S., F. T. Brozoski, S. M. Duma, and E. A. Kennedy. Development of the Facial and Ocular Countermeasures Safety (FOCUS) headform. Aviat. Space Environ. Med. 80(9):831, 2009.

    Article  PubMed  Google Scholar 

  15. Diederichs, G., A. S. Issever, S. Greiner, B. Linke, and J. Korner. Three-dimensional distribution of trabecular bone density and cortical thickness in the distal humerus. J. Should. Elb. Surg. 8(3):399–407, 2009.

    Article  Google Scholar 

  16. Dougherty, G., and D. Newman. Measurement of thickness and density of thin structures by computed tomography: a simulation study. Med. Phys. 26(7):1341–1348, 1999.

    Article  PubMed  CAS  Google Scholar 

  17. Duma, S. M., T. P. Ng, E. A. Kennedy, J. D. Stitzel, I. P. Herring, and F. Kuhn. Determination of significant parameters for eye injury risk from projectiles. J. Trauma 59(4):960–964, 2005.

    Article  PubMed  Google Scholar 

  18. Duma, S. M., P. H. Schreiber, J. D. McMaster, J. R. Crandall, C. R. Bass, and W. D. Pilkey. Dynamic injury tolerances for long bones of the female upper extremity. J. Anat. 194(3):463–471, 1999.

    Article  PubMed  Google Scholar 

  19. Eckstein, F., S. Milz, H. Anetzberger, and R. Putz. Thickness of the subchondral mineralised tissue zone (SMZ) in normal male and female and pathological human patellae. J. Anat. 192(1):81–90, 1998.

    Article  PubMed  Google Scholar 

  20. Fawzy, H., N. Alhodaib, C. D. Mazer, A. Harrington, D. Latter, D. Bonneau, L. Errett, and J. Mahoney. Sternal plating for primary and secondary sternal closure, can it improve sternal stability? J. Cardiothorac. Surg. 4:19, 2009.

    Article  PubMed  Google Scholar 

  21. Flannagan, C., M. Manary, L. Schneider, and M. Reed. An improved seating accommodation model with application to different user populations. Proceedings of the SAE World Congress & Exposition, Detroit, MI, Feb. 23–26, 1998. Vol. 1358, pp. 43–50, SAE, Warrendale, PA, USA.

  22. Gayzik, F. S., C. A. Hamilton, J. C. Tan, C. McNally, S. M. Duma, K. D. Klinich, and J. D. Stitzel. A multi-modality image data collection protocol for full body finite element model development. SAE Technical Paper 2009-01-2261. doi:10.4271/2009-01-2261.

  23. Gayzik, F. S., J. J. Hoth, M. Daly, J. W. Meredith, and J. D. Stitzel. A finite element-based injury metric for pulmonary contusion: investigation of candidate metrics through correlation with computed tomography. Stapp Car Crash J. 51:189–209, 2007.

    PubMed  Google Scholar 

  24. Gayzik, F. S., J. J. Hoth, and J. D. Stitzel. Finite element-based injury metrics for pulmonary contusion via concurrent model optimization. Biomech. Model. Mechanobiol. 10(4):505–520, 2011.

    Article  PubMed  Google Scholar 

  25. Gayzik, F. S., R. S. Martin, H. C. Gabler, J. J. Hoth, S. M. Duma, J. W. Meredith, and J. D. Stitzel. Characterization of crash-induced thoracic loading resulting in pulmonary contusion. J. Trauma 66(3):840–849, 2009.

    Article  PubMed  Google Scholar 

  26. Gordon, C. C., T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, I. Tebbetts, and R. A. Walker. 1988 Anthropometric survey of US Army personnel: methods and summary statistics. Technical Report NATICK/TR-89/044. US Army Natick Research, Development, and Engineering Center, Natick, MA, 1989.

  27. Gray, H., and D. C. Carmine. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1985.

    Google Scholar 

  28. Hedenstierna, S., and P. Halldin. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts. Spine 33(8):E236–E245, 2008.

    Article  PubMed  Google Scholar 

  29. Högler, W., C. J. R. Blimkie, C. T. Cowell, A. F. Kemp, J. Briody, P. Wiebe, N. Farpour-Lambert, C. S. Duncan, and H. J. Woodhead. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 33(5):771–778, 2003.

    Article  PubMed  Google Scholar 

  30. Holzbaur, K. R., W. M. Murray, G. E. Gold, and S. L. Delp. Upper limb muscle volumes in adult subjects. J. Biomech. 40(4):742–749, 2007.

    Article  PubMed  Google Scholar 

  31. Iwamoto, M., Y. Kisanuki, I. Wantanabe, K. Furusu, K. Miki, and J. Hasegawa. Development of a finite element model of the Total Human Model for Safety (THUMS) and application to injury reconstruction. Proceedings of the International Research Council on the Biomechanics of Injury (IRCOBI). Sept. 18–20, 2002. Munich, Germany, pp. 1–12.

  32. Kamibayashi, L. K., and F. J. Richmond. Morphometry of human neck muscles. Spine 23(12):1314–1323, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Kemper, A. R., C. McNally, E. A. Kennedy, S. J. Manoogian, A. L. Rath, T. P. Ng, J. D. Stitzel, E. P. Smith, S. M. Duma, and F. Matsuoka. Material properties of human rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J. 49:199–230, 2005.

    PubMed  Google Scholar 

  34. Kimpara, H., J. B. Lee, K. H. Yang, A. I. King, M. Iwamoto, I. Watanabe, and K. Miki. Development of a three-dimensional finite element chest model for the 5(th) percentile female. Stapp Car Crash J. 49:251–269, 2005.

    PubMed  Google Scholar 

  35. Knaub, K., C. Van Ee, C. Cheng, B. Poon, C. Spritzer, and B. S. Myers. Measurement of Human Neck Muscle Volume Geometry and Physiologic Cross-Sectional Area in 5th, 50th, and 95th Percentile Subjects Using Cadaveric Dissection and MRI. National Highway Traffic Safety Administration, NHTSA-98-3588-34, 1999.

  36. Li, Z., M. W. Kindig, J. R. Kerrigan, C. D. Untaroiu, D. Subit, J. R. Crandall, and R. W. Kent. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study. J. Biomech. 43:228–234, 2010.

    Article  PubMed  Google Scholar 

  37. Lieber, R. L. Skeletal Muscle Structure, Function, & Plasticity: The Physiological Basis of Rehabilitation. Baltimore: Lippincott Williams and Wilkins, 2002.

    Google Scholar 

  38. Gladman, B. LS-Dyna Keyword User’s Manual v. 971. Livermore, CA: Livermore Software Technology Corporation, 1997.

  39. Manary, M., C. Flannagan, M. Reed, and L. Schneider. Human Subject Testing in Support of ASPECT, SAE Technical Paper 1999-01-0960. doi:10.4271/1999-01-0960, 1999.

  40. Manoogian, S. J., E. A. Kennedy, K. A. Wilson, S. M. Duma, and N. M. Alem. Predicting neck injuries due to head-supported mass. Aviat. Space Environ. Med. 77(5):509–514, 2006.

    PubMed  Google Scholar 

  41. Maurel, N., A. Diop, and J. Grimberg. A 3D finite element model of an implanted scapula: importance of a multiparametric validation using experimental data. J. Biomech. 38(9):1865–1872, 2005.

    Article  PubMed  CAS  Google Scholar 

  42. McConville, J. T., T. D. Churchill, I. Kaleps, C. E. Clauser, and J. Cuzzi. Anthropometric relationships of body and body segment moments of inertia. Technical Report AFAMRL-TR-80-119, Aerospace Medical Research Laboratory, Wright–Patterson Air Force Base, Dayton, Ohio, 1980.

  43. Mertz, H. Anthropomorphic test devices. In: Accidental Injury, Biomechanics and Prevention, edited by A. Nahum, and J. Melvin. New York: Springer, 1993, pp. 66–84.

    Google Scholar 

  44. Moorcroft, D. M., J. D. Stitzel, G. G. Duma, and S. M. Duma. Computational model of the pregnant occupant: predicting the risk of injury in automobile crashes. Am. J. Obstet. Gynecol. 189(2):540–544, 2003.

    Article  PubMed  Google Scholar 

  45. Moorcroft, D. M., J. D. Stitzel, S. M. Duma, and G. G. Duma. The effects of uterine ligaments on the fetal injury risk in frontal automobile crashes. Proc. Inst. Mech. Eng. D J. Automob. Eng. 217(D):1049–1055, 2003.

    Google Scholar 

  46. Moss, S., Z. Wang, M. Salloum, M. Reed, M. van Ratingen, D. Cesari, R. Scherer, T. Uchimura, and M. Beusenberg. Anthropometry for WorldSID a world-harmonized midsize male side impact crash dummy. Proceedings of the SAE Government Industry Meeting. Washington, DC, June 19th–21st, pp. 1–11, 2000.

  47. Myoung, H., Y. Y. Kim, M. S. Heo, S. S. Lee, S. C. Choi, and M. J. Kim. Comparative radiologic study of bone density and cortical thickness of donor bone used in mandibular reconstruction. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 92(1):23–29, 2001.

    Article  PubMed  CAS  Google Scholar 

  48. Netter, F. Atlas of Human Anatomy, 4th ed. Philadelphia: Saunders/Elsevier, 2006.

    Google Scholar 

  49. Ogden, C. L., C. D. Fryar, M. D. Carroll, and K. M. Flegal. Mean body weight, height, and body mass index, United States 1960–2002. Advance data from vital and health statistics; no. 347, 1–18. Hyattsville, Maryland: National Center for Health Statistics, 2004.

  50. Peretz, A. M., J. A. Hipp, and M. H. Heggeness. The internal bony architecture of the sacrum. Spine 23(9):971–974, 1998.

    Article  PubMed  CAS  Google Scholar 

  51. Power, E. D., S. M. Duma, J. D. Stitzel, I. P. Herring, R. L. West, C. R. Bass, J. S. Crowley, and F. T. Brozoski. Computer modeling of airbag-induced ocular injury in pilots wearing night vision goggles. Aviat. Space Environ. Med. 73(10):1000–1006, 2002.

    PubMed  Google Scholar 

  52. Prevrhal, S., K. Engelke, and W. A. Kalender. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys. Med. Biol. 44(3):751–764, 1999.

    Article  PubMed  CAS  Google Scholar 

  53. Robbins, D. Anthropometric specifications for mid-sized male dummy. In: Anthropometry of Motor Vehicle Occupants, Vol. 2. US Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, UMTRI-83-53-2, 1983.

  54. Robin, S. Human Model for Safety—A joint effort towards the development of redefined human-like car-occupant models. In: Proceedings of the 17th International Technical Conference for the Enhanced Safety of Vehicles, 4–7 June 2001, Amsterdam, pp. 297–306, 2001.

  55. Ruan, J., R. El-Jawahri, L. Chai, S. Barbat, and P. Prasad. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model. Stapp Car Crash J. 47:299–321, 2003.

    PubMed  Google Scholar 

  56. Ruan, J. S., R. El-Jawahri, S. Barbat, and P. Prasad. Biomechanical analysis of human abdominal impact responses and injuries through finite element simulations of a full human body model. Stapp Car Crash J. 49:343–366, 2005.

    PubMed  Google Scholar 

  57. Scherf, H., and R. Tilgner. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. Am. J. Phys. Anthropol. 140(1):39–51, 2009.

    Google Scholar 

  58. Schneider, L., D. Robbins, M. Pflug, and R. Snyder. Development of anthropometrically based design specifications for an advanced adult anthropometric dummy family. In: Anthropometry of Motor Vehicle Occupants, Vol. 1. US Department of Transportation, National Highway Traffic Safety Administration, Washington, DC. UMTRI-83-53-1, 1983.

  59. Seki, S., and H. Iwamoto. Disruptive forces for swine heart, liver, and spleen: their breaking stresses. J. Trauma 45(6):1079–1083, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Shigeta, K., Y. Kitagawa, and T. Yasuki. Development of next generation human FE model capable of organ injury prediction. Procedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles. Stuttgart, Germany, June 15th–18th, 09-0111, 2009.

  61. Spitzer, V., M. Ackerman, A. Scherzinger, and D. Whitlock. The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3:118–130, 1996.

    Article  PubMed  CAS  Google Scholar 

  62. Stitzel, J. D., J. T. Barretta, and S. M. Duma. Predicting fractures due to blunt impact: a sensitivity analysis of the effects of altering failure strain of human rib cortical bone. Int. J. Crashworthiness 9(6):633–642, 2004.

    Article  Google Scholar 

  63. Stitzel, J. D., G. A. Hansen, I. P. Herring, and S. M. Duma. Blunt trauma of the aging eye: injury mechanisms and increasing lens stiffness. Arch. Ophthalmol. 123(6):789–794, 2005.

    Article  PubMed  Google Scholar 

  64. Virtama, P., and T. Helela. Radiographic measurements of cortical bone: Variations in a normal population between 1 and 90 years of age. Acta Radiol Suplementum 293:1–268, 1969.

    Google Scholar 

  65. Weaver, A. A., E. A. Kennedy, S. M. Duma, and J. D. Stitzel. Evaluation of different projectiles in matched experimental eye impact simulations. J. Biomech. Eng. 133(3):031002, 2011.

    Article  PubMed  Google Scholar 

  66. Weaver, A. A., K. L. Loftis, S. M. Duma, and J. D. Stitzel. Biomechanical modeling of eye trauma for different orbit anthropometries. J. Biomech. 44(7):1296–1303, 2011.

    Article  PubMed  Google Scholar 

  67. Weaver, A. A., K. L. Loftis, J. C. Tan, S. M. Duma, and J. D. Stitzel. CT based three-dimensional measurement of orbit and eye anthropometry. Invest. Ophthalmol. Vis. Sci. 51(10):4892–4897, 2010.

    Article  PubMed  Google Scholar 

  68. Xia, Y., W. Lin, and Y. X. Qin. The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound. J. Acoust. Soc. Am. 118(3 Pt 1):1801–1807, 2005.

    Article  PubMed  Google Scholar 

  69. Yang, K. H., J. Hu, N. A. White, A. I. King, C. C. Chou, and P. Prasad. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference. Stapp Car Crash J. 50:429–490, 2006.

    PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Global Human Body Models Consortium, LLC (GHBMC) through grant WFU: FBM-001. CAD development study was supported by Zygote Media Group, Inc. (American Fork, UT).

Conflict of Interest

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Stitzel.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Appendix

Appendix

Table A1 Landmarks acquired for the external anthropometry study used in model construction

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayzik, F.S., Moreno, D.P., Geer, C.P. et al. Development of a Full Body CAD Dataset for Computational Modeling: A Multi-modality Approach. Ann Biomed Eng 39, 2568–2583 (2011). https://doi.org/10.1007/s10439-011-0359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0359-5

Keywords

Navigation