Skip to main content

Advertisement

Log in

A Single Camera Photogrammetry System for Multi-angle Fast Localization of EEG Electrodes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abdel-Aziz, Y. I., and H. M. Karara. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proceedings of the Symposium on Close-Range Photogrammetry. Falls Church, VA: American Society of Photogrammetry, pp. 1–18, 1997.

  2. Atkinson, K. B. Close Range Photogrammetry and Machine Vision. Scotland: Whittles Publishing, 1996.

    Google Scholar 

  3. Baillet, S., J. C. Mosher, and R. M. Leahy. Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6):14–30, 2001.

    Article  Google Scholar 

  4. Bauer, H., C. Lamm, S. Holzreiter, I. Hollander, U. Leodolter, and M. Leodolter. Measurement of 3D electrode coordinates by means of a 3D photogrammetric head digitizer. NeuroImage 11:461, 2000.

    Article  Google Scholar 

  5. Baysal, U., and G. Sengül. Single camera photogrammetry system for EEG electrode identification and localization. Ann. Biomed. Eng. 38:1539–1547, 2010.

    Article  PubMed  Google Scholar 

  6. Bhanu, B., and J. Peng. Adaptive integrated image segmentation and object recognition. IEEE Trans. Syst. Man Cyber C 30:427–441, 2000.

    Article  Google Scholar 

  7. Binnie, C. D., E. Dekker, A. Smit, and G. van der Linken. Practical considerations in the positioning of EEG electrodes. Electroencephalogr. Clin. Neurophysiol. 53(4):453–458, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Brinkmann, B., T. O’Brien, A. Dresner, T. Lagerlund, W. Sharbrough, and A. Robb. Scalp-recorded EEG localization in MRI volume data. Brain Topogr. 10:245–253, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, P., and D. Suter. Recovering the missing components in a large noisy low-rank matrix: application to SFM. IEEE Trans. Pattern Anal. Mach. Intell. 26:1051–1063, 2004.

    Article  PubMed  Google Scholar 

  10. Colombo, C., and A. Del Bimbo. Colour-induced image representation and retrieval. Pattern Recognit. 32:1685–1695, 1999.

    Article  Google Scholar 

  11. De Munck, J. C., P. C. M. Vijn, and H. Spekreijse. A practical method for determining electrode positions on the head. Electroencephalogr. Clin. Neurophysiol. 78(1):85–87, 1991.

    Article  PubMed  Google Scholar 

  12. Forbes, K., F. Nicolls, G. de Jager, and A. Voigt. Shape-from-silhouette with two mirrors and an uncalibrated camera. In: ECCV 2006, pp. 165–178, 2006.

  13. Golub, G. Numerical methods for solving linear least squares problems. Numer. Math. 7:206–216, 1965.

    Article  Google Scholar 

  14. Hatze, H. High precision three dimensional photogrammetric calibration and object space reconstruction using a modified DLT approach. J. Biomech. 21(7):533–538, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Huppertz, H., M. Otte, C. Grimm, R. Kriesteva-Feige, T. Mergner, and C. Lcking. Estimation of the accuracy of a surface matching technique for registration of EEG and MRI data. Electroencephalogr. Clin. Neurophysiol. 106:409–415, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Jacobs, D. W. Linear fitting with missing data for structure-from-motion. Comput. Vis. Image Underst. 82:57–81, 2001.

    Article  Google Scholar 

  17. Jia, H. Low-rank matrix fitting based on subspace perturbation analysis with applications to structure from motion. IEEE Trans. Pattern Anal. Mach. Intell. 31(5):841–854, 2004.

    Google Scholar 

  18. Jiang, R., D. V. Jauregui, and K. R. White. Close-range photogrammetry applications in bridge measurement: literature review. Measurement 41:823–834, 2008.

    Article  Google Scholar 

  19. Khosla, D., M. Don, and B. Kwong. Spatial mislocalization of EEG electrodes—effects on accuracy of dipole estimation. Clin. Neurophysiol. 110(2):261–271, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Klem, G. H., H. O. Luders, H. H. Jasper, and C. Elger. The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52:3–6, 1999.

    PubMed  CAS  Google Scholar 

  21. Koessler, L., T. Cecchin, O. Caspary, A. Benhadid, H. Vespignani, and L. Maillard. EEG-MRI co-registration and sensor labeling using a 3D laser scanner. Ann. Biomed. Eng. 39:983–995, 2010.

    Article  PubMed  Google Scholar 

  22. Koessler, L., L. Maillard, A. Benhadid, J. P. Vignal, M. Braun, and H. Vespignani. Spatial localization of EEG electrodes. Clin. Neurophysiol. 37:97–102, 2007.

    Article  CAS  Google Scholar 

  23. Kraus, K. Photogrammetry, Volume 1. Fundamentals and Standard Processes. Bonn: Dümmler, 1993.

    Google Scholar 

  24. Lanman, D., D. Crispell, and G. Taubin. Surround structured lighting: 3-D scanning with orthographic illumination. Comput. Vis. Image Underst. 113:1107–1117, 2009.

    Article  Google Scholar 

  25. Le, J., M. Lu, E. Pellouchoud, and A. Gevins. A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies. Electroencephalogr. Clin. Neurophysiol. 106:554–588, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Lin, I.-C., J.-S. Yeh, and M. Ouhyoung. Extracting realistic 3D facial animation parameters from multiview video clips. IEEE Comput. Graph. Appl. 6:72–80, 2002.

    Google Scholar 

  27. Michel, C. M., M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta. EEG source imaging. Clin. Neurophysiol. 115:2195–2222, 2004.

    Article  PubMed  Google Scholar 

  28. Quiñones-Rozo, C. A., Y. M. A. Hashash, and L. Y. Liu. Digital image reasoning for tracking excavation activities. Automat. Constr. 17(5):608–622, 2008.

    Google Scholar 

  29. Russell, G. S., K. J. Eriksen, P. Poolman, P. Luu, and D. M. Tucker. Geodesic photogrammetry for localizing sensor positions in dense-array EEG. Clin. Neurophysiol. 116:1130–1140, 2005.

    Article  PubMed  Google Scholar 

  30. Sijberg, J., B. Vanrumste, G. Van Hoey, P. Boon, M. Verhoye, and A. Van der Linden. Automatic localization of EEG electrode markers within 3D MR data. Magn. Reson. Imaging 18:485–488, 2000.

    Article  Google Scholar 

  31. Steddin, S., and K. Bötzel. A new device for scalp electrode localization with unrestrained head. J. Neurol. 242:65, 1995.

    Article  Google Scholar 

  32. Van Hoey, G., B. Vamrumste, M. D’Have, R. Van de Walle, I. Lemahieu, and P. Boon. Influence of measurement noise and electrode mislocalization on EEG dipole-source localisation. Med. Biol. Eng. Comput. 38:287–296, 2000.

    Article  PubMed  Google Scholar 

  33. Wang, Y., and J. Gotman. The influence of electrode location errors on EEG dipole source localization with a realistic head model. Clin. Neurophysiol. 112(9):1777–1780, 2001.

    Article  PubMed  CAS  Google Scholar 

  34. Yang, F., and X. Yuan. Human movement reconstruction from video shot by a single stationary camera. Ann. Biomed. Eng. 33:674–684, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Yoo, S. S., C. Guttmann, J. Ives, L. Panych, R. Kikinis, and D. Schomer. 3D localization of surface 10–20 electrodes on high resolution anatomical MR images. Electroencephalogr. Clin. Neurophysiol. 102:335–339, 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Department of Precision Machinery and Precision Instrumentation in University of Science and Technology of China for the CMM data collection. We also thank Guangping Fei, Xuan Yao, and Jianting Wang for their helps related to camera calibration and electrode recognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sheng.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, S., Sheng, Y. A Single Camera Photogrammetry System for Multi-angle Fast Localization of EEG Electrodes. Ann Biomed Eng 39, 2844–2856 (2011). https://doi.org/10.1007/s10439-011-0374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0374-6

Keywords

Navigation