Skip to main content
Log in

Photothermal Cancer Therapy and Imaging Based on Gold Nanorods

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gold nanorods (GNRs), which strongly absorb near-infrared (NIR) light, have shown great potential in fields of biomedical application. These include photothermal therapy, molecular imaging, biosensing, and gene delivery, especially for the treatment of diseased tissues such as cancer. These biomedical applications of GNRs arise from their various useful properties; photothermal (nanoheater) properties, efficient large scale synthesis, easy functionalization, and colloidal stability. In addition, GNRs do not decompose and have an enhanced scattering signal and tunable longitudinal plasmon absorption which allow them to be used as a stable contrast agent. Therefore, GNRs are also promising theranostic agents, combining both tumor diagnosis and treatment. In this review, we discuss the recent progress of in vitro and in vivo explorations of the diagnostic and therapeutic applications of GNRs as a component of cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Akiyama, Y., T. Mori, Y. Katayama, and T. Niidome. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J. Control. Release 139:81–84, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Alkilany, A. M., and C. J. Murphy. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12:2313–2333, 2010.

    Article  PubMed  CAS  Google Scholar 

  3. Alkilany, A. M., P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708, 2009.

    Article  PubMed  CAS  Google Scholar 

  4. Alkilany, A. M., L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 2011. doi:10.1016/j.addr.2011.03.005.

  5. A. S. A. Al-Sherbini. Thermal reshaping of gold nanorods in micellar solution of water/glycerol mixtures. J. Nanomater. 2010:Article ID 569462, 2010.

  6. Altansukh, B., J. Yao, and D. Wang. Synthesis and characterization of gold nanorods by a seeding growth method. J. Nanosci. Nanotechnol. 9:1300–1303, 2009.

    Article  PubMed  CAS  Google Scholar 

  7. Austin, M. D., W. C. W. Chan, and S. N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4:11–18, 2004.

    Article  Google Scholar 

  8. Chakravarty, P., R. Marches, N. S. Zimmerman, A. D. E. Swafford, P. Bajaj, I. H. Musselman, P. Pantano, R. K. Draper, and E. S. Vitetta. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 105:8697–8702, 2008.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, Y. S., W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 18:8867–8878, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, C. L., L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen. In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons. Biomaterials 31:4104–4112, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, J., D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7:1318–1322, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Chithrani, B. D., and W. C. W. Chan. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7:1542–1550, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Chithrani, B. D., A. A. Ghazani, and W. C. W. Chan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662–668, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Choi, W. I., J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003, 2011.

    Article  PubMed  CAS  Google Scholar 

  15. Daniel, M. C., and D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346, 2004.

    Article  PubMed  CAS  Google Scholar 

  16. DeVries, G. A., M. Brunnbauer, Y. Hu, A. M. Jackson, B. Long, B. T. Neltner, O. Uzun, B. H. Wunsch, and F. Stellacci. Divalent metal nanoparticles. Science 315:358–361, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Dickerson, E. B., E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed. Gold nanorods assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269:57–66, 2008.

    Article  PubMed  CAS  Google Scholar 

  18. Ding, H., K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J. Phys. Chem. C 111:12552–12557, 2007.

    Article  CAS  Google Scholar 

  19. Durr, N. J., T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 7:941–945, 2007.

    Article  PubMed  CAS  Google Scholar 

  20. Eghtedari, M., A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 7:1914–1918, 2007.

    Article  PubMed  CAS  Google Scholar 

  21. El-Sayed, I. H., X. H. Huang, and M. A. El-Sayed. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5:829–834, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Gans, R. Form of ultramicroscopic particles of silver. Ann. Phys. 47:270–284, 1915.

    Article  CAS  Google Scholar 

  23. Ghosh, P., G. Han, M. De, C. K. Kim, and V. M. Rotello. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60:1307–1315, 2008.

    Article  PubMed  CAS  Google Scholar 

  24. Hauck, T. S., A. A. Ghazani, and W. C. W. Chan. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159, 2008.

    Article  PubMed  CAS  Google Scholar 

  25. Huang, H. C., S. Barua, D. B. Kay, and K. Rege. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano 3:2941–2952, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Huang, X., I. H. El-Sayed, and M. A. El-Sayed. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624:343–357, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Huang, X. H., I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128:2115–2120, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Huang, X., I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnosis marker. Nano Lett. 7:1591–1597, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Huang, X., P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23:217–228, 2008.

    Article  PubMed  Google Scholar 

  30. Huang, X., S. Neretina, and M. A. El-Sayed. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21:4880–4910, 2009.

    Article  CAS  Google Scholar 

  31. Huang, H. C., K. Rege, and J. J. Heys. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano 4:2892–2900, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Imura, K., T. Nagahara, and H. Okamoto. Plasmon mode imaging of single gold nanorods. J. Am. Chem. Soc. 126:12730–12731, 2004.

    Article  PubMed  CAS  Google Scholar 

  33. Jain, P. K., X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc. Chem. Res. 41:1578–1586, 2008.

    Article  PubMed  CAS  Google Scholar 

  34. Jana, N. R. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Jelveh, S., and D. B. Chithrani. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers 3:1081–1110, 2011.

    Article  CAS  Google Scholar 

  36. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–677, 2003.

    Article  CAS  Google Scholar 

  37. Kim, J.-Y., W. I. Choi, Y. H. Kim, G. Tae, S. Y. Lee, K. Kim, and I. C. Kwon. In-vivo tumor targeting of pluronic-based nano-carriers. J. Control. Release 147:109–117, 2010.

    Article  PubMed  CAS  Google Scholar 

  38. Kim, K., S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl. Phys. Lett. 90:223901, 2007.

    Article  Google Scholar 

  39. Kim, J., S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, and T. Hyeon. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. Int. Ed. 45:7754–7758, 2006.

    Article  CAS  Google Scholar 

  40. Kim, F., J. H. Song, and P. D. Yang. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124:14316–14317, 2002.

    Article  PubMed  CAS  Google Scholar 

  41. Kim, E., J. Yang, J. Choi, J. S. Suh, Y. M. Huh, and S. Haam. Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology 20:365602, 2009.

    Article  PubMed  Google Scholar 

  42. Lal, S., S. E. Clare, and N. J. Halas. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41:1842–1851, 2008.

    Article  PubMed  CAS  Google Scholar 

  43. Li, J. L., D. Day, and M. Gu. Ultra-low energy threshold for photothermal therapy of cancer using transferrin-conjugated gold nanorods. Adv. Mater. 20:3866–3871, 2008.

    Article  CAS  Google Scholar 

  44. Li, Z., P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharm. 7:94–104, 2010.

    Article  PubMed  CAS  Google Scholar 

  45. Li, Y., W. Lu, Q. Huang, M. Huang, C. Li, and W. Chen. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5:1161–1171, 2010.

    Article  PubMed  CAS  Google Scholar 

  46. Liu, X., Q. Dai, L. Austin, J. Coutts, G. Knowles, J. H. Zou, H. Chen, and Q. Huo. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130:2780–2782, 2008.

    Article  PubMed  CAS  Google Scholar 

  47. Lu, W., C. Y. Xiong, G. D. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin. Cancer Res. 15:876–886, 2009.

    Article  PubMed  CAS  Google Scholar 

  48. Marquis, B. J., S. A. Love, K. L. Braun, and C. L. Haynes. Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439, 2009.

    Article  PubMed  CAS  Google Scholar 

  49. Melancon, M. P., W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, and C. Li. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptors for photothermal ablation therapy. Mol. Cancer Ther. 7:1730–1739, 2008.

    Article  PubMed  CAS  Google Scholar 

  50. Mie, G. Contribution to the optics of turbid media especially colloidal metal suspensions. Ann. Phys. 25:377–445, 1908.

    Article  CAS  Google Scholar 

  51. Murphy, C. J., A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41:1721–1730, 2008.

    Article  PubMed  CAS  Google Scholar 

  52. Murphy, C. J., T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109:13857–13870, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Niidome, Y., K. Honda, K. Higashimoto, H. Kawazumi, S. Yamada, N. Nakashima, Y. Sasaki, Y. Ishida, and J. Kikuchi. Surface modification of gold nanorods with synthetic cationic lipids. Chem. Commun. 36:3777–3779, 2007.

    Article  Google Scholar 

  54. Niidome, T., A. Ohga, Y. Akiyama, K. Watanabe, Y. Niidome, T. Mori, and Y. Katayama. Controlled release of PEG chain from gold nanorods: targeted delivery to tumor. Bioorg. Med. Chem. 18:4453–4458, 2010.

    Article  PubMed  CAS  Google Scholar 

  55. Niidome, T., M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control Release 114:343–347, 2006.

    Article  PubMed  CAS  Google Scholar 

  56. Obare, S. O., N. R. Jana, and C. J. Murphy. Preparation of polystyrene and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett. 1:601–603, 2001.

    Article  CAS  Google Scholar 

  57. Oldenburg, S. J., R. D. Averitt, and S. L. Westcott. Nanoengineering of optical resonances. Chem. Phys. Lett. 288:243–247, 1998.

    Article  CAS  Google Scholar 

  58. Oldenburg, A. L., M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J. Mater. Chem. 19:6407–6411, 2009.

    Article  PubMed  CAS  Google Scholar 

  59. Park, H. J., C. S. Ah, W. J. Kim, I. S. Choi, K. P. Lee, and W. S. Yun. Temperature-induced control of aspect ratio of gold nanorods. J. Vac. Sci. Technol. A 24:1323–1326, 2006.

    Article  CAS  Google Scholar 

  60. Pastoriza-Santos, I., J. Perez-Juste, and L. M. Liz-Marzan. Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem. Mater. 18:2465–2467, 2006.

    Article  CAS  Google Scholar 

  61. Peer, D., J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2:751–760, 2007.

    Article  PubMed  CAS  Google Scholar 

  62. Perez-Juste, J., L. M. Liz-Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney. Electric-field-directed growth for gold nanorods. Adv. Funct. Mater. 14:571–579, 2004.

    Article  CAS  Google Scholar 

  63. Perez-Juste, J., I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249:1870–1901, 2005.

    Article  CAS  Google Scholar 

  64. Pissuwan, D., S. Valenzuela, and M. B. Cortie. Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechnol. Genet. Eng. Rev. 25:93–112, 2008.

    Article  PubMed  CAS  Google Scholar 

  65. Prasad, B. R., N. Nikolskaya, D. Connolly, T. J. Smith, S. J. Byrne, V. A. Gérard, Y. K. Gun’ko, and Y. Rochev. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use. J. Nanobiotechnol. 8:7, 2010.

    Article  Google Scholar 

  66. Rayavarapu, R. G., W. Petersen, L. Hartsuiker, P. Chin, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen. In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology 21:145101, 2010.

    Article  PubMed  Google Scholar 

  67. Robinson, J. T., S. M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh, and H. Dai. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133:6825–6831, 2011.

    Article  PubMed  CAS  Google Scholar 

  68. Salem, A. K., P. C. Searson, and K. W. Leong. Multifunctional nanorods for gene delivery. Nat. Mater. 2:668–671, 2003.

    Article  PubMed  CAS  Google Scholar 

  69. Smith, D. K., and B. A. Korgel. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649, 2008.

    Article  PubMed  CAS  Google Scholar 

  70. Takahashi, H., T. Niidome, T. Kawano, S. Yamada, and Y. Niidome. Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. J. Nanopart. Res. 10:221–228, 2008.

    Article  CAS  Google Scholar 

  71. Takahashi, H., Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 22:2–5, 2006.

    Article  PubMed  CAS  Google Scholar 

  72. Tong, L., Q. Wei, A. Wei, and J. X. Cheng. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85:21–32, 2009.

    Article  PubMed  CAS  Google Scholar 

  73. Tong, L., Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 19:3136–3141, 2007.

    Article  PubMed  CAS  Google Scholar 

  74. von Maltzahn, G., J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69:3892–3900, 2009.

    Article  Google Scholar 

  75. Wang, H. F., T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl. Acad. Sci. USA 102:15752–15756, 2005.

    Article  PubMed  CAS  Google Scholar 

  76. Wei, A., A. P. Leonov, and Q. Wei. Gold nanorods: multifunctional agents for cancer imaging and therapy. Methods Mol. Biol. 624:119–130, 2010.

    Article  PubMed  CAS  Google Scholar 

  77. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–317, 2001.

    Article  PubMed  CAS  Google Scholar 

  78. Xu, X., and M. B. Cortie. Shape change and color gamut in gold nanorods, dumbbells and dog-bones. Adv. Funct. Mater. 16:2170–2176, 2006.

    Article  CAS  Google Scholar 

  79. Yang, D. P., and D. X. Cui. Advances and prospects of gold nanorods. Chem. Asian J. 3:2010–2022, 2008.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, J. Z. Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett. 1:686–695, 2010.

    Article  CAS  Google Scholar 

  81. Zharov, V. P., E. N. Galitovskaya, C. Johnson, and T. Kelly. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg. Med. 37:219–226, 2005.

    Article  PubMed  Google Scholar 

  82. Zhu, J., K. T. Yong, I. Roy, R. Hu, H. Ding, L. Zhao, M. T. Swihart, G. S. He, Y. Cui, and P. N. Prasad. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 21:285106–285113, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Research Foundation of Korea (NRF) funded MEST of Korea (two projects: R15-2008-006-02002-0 and 20100011952).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giyoong Tae.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, W.I., Sahu, A., Kim, Y.H. et al. Photothermal Cancer Therapy and Imaging Based on Gold Nanorods. Ann Biomed Eng 40, 534–546 (2012). https://doi.org/10.1007/s10439-011-0388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0388-0

Keywords

Navigation