Skip to main content

Advertisement

Log in

A Finite Element Model of the Foot and Ankle for Automotive Impact Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A finite element (FE) model of the foot and leg was developed to improve understanding of injury mechanisms of the ankle and subtalar joints during vehicle collisions and to aid in the design of injury countermeasures. The FE model was developed based on the reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male and a commercial anatomical database. While the forefoot bones were defined as rigid bodies connected by ligament models, the surrounding bones of the ankle and subtalar joints and the leg bones were modeled as deformable structures. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The whole foot and leg model was validated in different loading conditions including forefoot impact, axial rotation, dorsiflexion, and combined loadings. Overall results obtained in the model validation indicated improved biofidelity relative to previous FE models. The developed model was used to investigate the injury tolerance of the ankle joint under brake pedal loading for internally and externally rotated feet. Ligament failures were predicted as the main source of injury in this loading condition. A 12% variation of failure moment was observed in the range of axial foot rotations (±15°). The most vulnerable position was the internally rotated (15°) posture among three different foot positions. Furthermore, the present foot and ankle model will be coupled together with other body region FE models into the state-of-art human FE model to be used in the field of automotive safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. American Association for Automotive Medicine. The Abbreviated Injury Scale. Arlington Heights: AAAM, 1985.

    Google Scholar 

  2. Beaugonin, M., E. Haug, and D. Cesari. A numerical model of the human ankle/foot under impact loading in inversion and eversion. In: SAE World Congress, 962428, 1996.

  3. Beaugonin, M., E. Haug, and D. Cesari. Improvement of numerical ankle/foot model: modeling of deformable bone. In: 41st Stapp Car Crash Conference Proceedings, pp. 225–237, 1997.

  4. Begeman, P., K. Aekbote, R. Levine, and A. King. Human ankle response in internal and external rotation. In: Proceedings of the 4th Injury Prevention Through Biomechanics Symposium, pp. 63–73, 1994.

  5. Beillas, P., F. Lavaste, D. Nicoloupoulos, K. Kayventash, K. H. Yang, and S. Robin. Foot and ankle finite element modeling using CT-scan data. In: 43rd Stapp Car Crash Conference Proceedings, pp. 171–184, 1999.

  6. Burstein, A. H., D. T. Reilly, and M. Martens. Aging of bone tissue: mechanical properties. J. Bone Joint Surg. Am. 58(1):82–86, 1976.

    PubMed  CAS  Google Scholar 

  7. Calhoun, J. H., F. Li, B. R. Ledbetter, and S. F. Viegas. A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot Ankle 15(3):125–133, 1994.

    PubMed  CAS  Google Scholar 

  8. Chen, J., S. Siegler, and C. D. Schneck. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints – part II: flexibility characteristics. J. Biomech. Eng. 110:374–385, 1998.

    Article  Google Scholar 

  9. Crandall, J. R., L. Portier, P. Petit, G. Hall, G. Klopp, C. Bass, S. Hurwitz, X. Trosseille, C. Tarriere, W. Pilkey, F. Lavaste, and M. Lassau. Biomechanical response and physical properties of the leg, foot, and ankle. In: Society of Automotive Engineers, Paper 962424, 1996.

  10. Crandall, J., P. G. Martin, C. R. Bass, W. D. Pilkey, P. C. Dischinger, A. R. Burgess, T. D. O’Quinn, and C. B. Schmidhauser. Foot and ankle injury: the roles of driver anthropometry, footwear, and pedal controls. Paper Presented at the 40th Annual Proceedings Association for the Advancement of Automotive Medicine, Vancouver, BC, Canada, 1996.

  11. Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39:1279–1286, 2006.

    Article  PubMed  Google Scholar 

  12. European Union. Directive 96/79/EC of the European Parliament and the Council on the Protection of Occupants of Motor Vehicles in the Event of a Frontal Impact. The Official Journal of the European Communities 40(21):1–7, 1996.

    Google Scholar 

  13. Funk, J., G. W. Hall, J. R. Crandall, and W. D. Pilkey. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J. Biomech. Eng. 122:15–22, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Gayzik, F. S., D. P. Moreno, C. A. Hamilton, J. C. Tan, C. McNally, S. M. Duma, K. D. Klinich, and J. D. Stitzel. A multi-modality image data collection protocol for full body finite element analysis model development. In: SAE Technical Paper 2009-01-2261, 2009, doi:10.4271/2009-01-2261.

  15. Gayzik, F., D. Moreno, C. Geer, S. Wuertzer, R. Martin, and J. Stitzel. Development of a full body CAD dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39(10):2568–2583, 2011.

    Article  PubMed  CAS  Google Scholar 

  16. Gomez, M. A., and A. M. Nahum. Biomechanics of bone. In: Accidental Injury: Biomechanics and Prevention, edited by A. M. Nahum, and J. W. Melvin. New York: Springer-Verlag, 2002, pp. 206–227.

    Google Scholar 

  17. Hall, G. W. Biomechanical Characterization and Multibody Modeling of the Human Lower Extremity, Dissertation, University of Virginia, 1998.

  18. Hofstede, D. J., M. J. P. F. Ritt, and K. E. Bos. Taral autografts for reconstruction of the scapholunate interosseous ligament: a biomechanical study. J. Hand Surg. 24A:968–976, 1999.

    Google Scholar 

  19. Iaquinto, J. M., and J. S. Wayne. Computational model of the lower leg and foot/ankle complex: application to arch stability. J. Biomech. Eng. 132(2):021009, 2010.

    Article  PubMed  Google Scholar 

  20. Imhauser, C. W. The Development and Evaluation of a 3-Dimensional, Image-Based, Patient-Specific, Dynamic Model of the Hindfoot. PhD Dissertation, Drexel University, 2004.

  21. Iwamoto, M., K. Miki, and E. Tanaka. Ankle skeletal injury predictions using anisotropic inelastic constitutive model of cortical bone taking into account damage evolution. In: Proceedings of the 49th Stapp Car Crash Conference, 2005.

  22. Johnson, E. E., and K. L. Markolf. The contribution of the anterior talofibular ligament to ankle laxity. J. Bone Joint Surg. 65A(1):89–91, 1983.

    Google Scholar 

  23. Kitaoka, H. B., Z. P. Luo, E. S. Growney, L. J. Berglund, and K. H. An. Material properties of the plantar aponeurosis. Foot Ankle Int. 15(10):557–560, 1994.

    PubMed  CAS  Google Scholar 

  24. Kura, H., Z. P. Luo, H. B. Kitaoka, W. P. Smutz, and K. N. An. Mechanical behavior of the lisfranc and dorsal cuneometatarsal ligaments: in vitro biomechanical study. J. Orthop. Trauma 15(2):107–110, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Linde, F., I. Hvid, and B. Pongsoipetch. Energy absorptive properties of human trabecular bone specimens during axial compression. J. Orthop. Res. 7:432, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Livermore Software Technology Corporation. LS-DYNA Keyword User’s Manual, Version 971, 2007.

  27. Mkandawire, C., W. R. Ledroux, B. J. Sangeorzan, and R. P. Ching. Hierarchical cluster analysis of area and length of foot and ankle ligaments. In: American Society of Biomechanics (ASB) Conference, San Diego, CA, USA, 2003.

  28. Mkandawire, C., W. R. Ledroux, B. J. Sangeorzan, and R. P. Ching. Foot and ankle ligament morphometry. J. Rehabil. Res. Dev. 42(6):809–820, 2005.

    Article  PubMed  Google Scholar 

  29. MIMX Laboratory. User’s Manual IA-FEMesh Version 1.0, 2008, www.ccad.uiowa.edu/mimx/IA-FEMesh.

  30. Morgan, R. M., R. H. Eppinger, and B. C. Hennessey. Ankle joint injury mechanism for adults in frontal automotive impact. In: Proceedings of the 35th Stapp Car Crash Conference, SAE Paper 912902, 1991.

  31. Pattimore, D., E. Ward, P. Thomas, and M. Bradford. The nature and cause of lower limb injuries in car crashes. In: Proceedings of the 35th Stapp Car Crash Conference, SAE paper 912901, pp. 177–188, 1991.

  32. Pilkey, W. D., E. Sieveka, J. R. Crandall, and G. S. Klopp. The influence of vehicular intrusion and rotation on occupant protection in full frontal and frontal offset crashes. In: Paper 4-S4-W-31. Proceedings of 14th ESV Conference, Munich, Germany, 1995.

  33. Portier, L., P. Petit, A. Dômont, X. Trossielle, J. Y. le Coz, C. Tarrière, and J. P. Lassau. Dynamic biomechanical dorsiflexion responses and tolerances of the ankle joint complex. In: Proceedings of the 41st Stapp Car Crash Conference, Society of Automotive Engineers, pp. 207–224, 1997.

  34. Qiu, T. X., E. C. Teo, Y. B. Yan, and W. Lei. Finite element modeling of a 3D coupled foot-boot model. Med. Eng. Phys. 33(10):1228–1233, 2011.

    Article  PubMed  Google Scholar 

  35. Rudd, R., J. Crandall, C. R. Bass, S. Lynn, and J. Keller. Lower Extremity and brake pedal interaction in frontal collisions: sled tests. In: Society of Automotive Engineers, Paper 980359, 1998.

  36. Rudd, R., J. Crandall, S. Millington, and S. Hurwitz. Injury tolerance and response of the ankle joint in dynamic dorsiflexion. Stapp Car Crash J. 48:1–26, 2004.

    PubMed  Google Scholar 

  37. Sarrafian, S. K. Anatomy of the Foot and Ankle. J. B. Lippincott Company, Philadelphia, 1983.

  38. Siegler, S., J. Chen, and C. D. Schneck. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints—part I: kinematics. J. Biomech. Eng. 110:364–373, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Snedeker, J. G., M. H. Muser, and F. H. Walz. Assessment of pelvis and upper leg injury risk in car-pedestrian collisions: comparison of accident statistics, impactor tests, and a human body finite element model. Stapp Car Crash J. 47:437–457, 2003.

    PubMed  Google Scholar 

  40. Solan, M. C., C. T. Morman, R. G. Miyamoto, L. E. Jasper, and S. M. Belkoff. Ligamentous restraints of the second tarsometatarsal joint: a biomechanical evaluation. Foot Ankle Int. 22(8):637–641, 2001.

    PubMed  CAS  Google Scholar 

  41. Stiehl, J. B., D. A. Skrade, and R. P. Johnson. Experimentally produced ankle fractures in autopsy specimens. Clin. Orthop. Relat. Res. 285:244–249, 1992.

    PubMed  Google Scholar 

  42. Tannous, R. E., F. A. Bandok, T. G. Toridis, and R. H. Eppinger. A three-dimensional finite element model of the human ankle: development and preliminary application to axial impulsive loading. In: Society of Automotive Engineers, Paper 962427, 1996.

  43. Untaroiu, C., K. Darvish, J. Crandall, B. Deng, and J. T. Wang. A finite element model of the lower limb for simulating pedestrian impact. Stapp Car Crash J. 49:157–181, 2005.

    PubMed  Google Scholar 

  44. Untaroiu, C. D. A numerical investigation of mid-femoral injury tolerance in axial compression and bending loading. Int. J. Crashworthiness 15(1):83–92, 2010.

    Article  Google Scholar 

  45. Wang, C. L., C. K. Cheng, C. W. Chen, C. M. Lu, Y. S. Hang, and T. K. Liu. Contact areas and pressure distribution in the subtalar joint. J. Biomech. 28(3):269–279, 1995.

    Article  PubMed  CAS  Google Scholar 

  46. Wei, F., M. R. Villwock, E. G. Meyer, J. W. Powell, and R. C. Haut. A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver. J. Biomech. Eng. 132:091001, 2010.

    Article  PubMed  Google Scholar 

  47. Wheeler, L., C. Owen, A. Roberts, R. W. Lowne, P. A. Manning, and W. A. Wallace. Biofidelity of dummy legs for use in legislative crash testing. In: International Vehicle Safety 2000 Conference Transactions, London, England, pp. 183–200, 2000.

  48. Yang, K.H., J. Hu, N. A. White, and A. I. King. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference. In: Proceedings of the 50th Stapp Car Crash Conference, SAE paper 2006-22-0017, 2006.

  49. Yue, N., J. Shin, and C. D. Untaroiu. Development and validation of an occupant lower limb finite element model. In: Society of Automotive Engineers, SAE World Congress 2011, Paper 2011-01-1128, Detroit, USA, 2011.

Download references

Acknowledgments

Funding for this study was provided by the Global Human Body Models Consortium, LLC (GHBMC) through grant: PLEXM-001. The authors thank GHBMC committee members, Dr. James Funk, Dr. Rodney Rudd, and Dr. Jeff Crandall for their support given to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costin D. Untaroiu.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Appendix: The Material/Structural Properties of the Bone and Foot Ligaments

Appendix: The Material/Structural Properties of the Bone and Foot Ligaments

Table A1 Mechanical properties of bone models
Table A2 Geometric data of midfoot ligament models
Table A3 Structural properties of forefoot ligament models

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, J., Yue, N. & Untaroiu, C.D. A Finite Element Model of the Foot and Ankle for Automotive Impact Applications. Ann Biomed Eng 40, 2519–2531 (2012). https://doi.org/10.1007/s10439-012-0607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0607-3

Keywords

Navigation