Skip to main content
Log in

In Vivo Tracking of Superparamagnetic Iron Oxide Nanoparticle Labeled Chondrocytes in Large Animal Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Chondrocytes have been widely used as tissue engineered seed cells for repair of focal cartilage lesions in clinic. However, in vivo behaviors of delivered chondrocytes are still poorly understood. In this study, the feasibility of in vivo tracking of superparamagnetic iron oxide nanoparticle (SPIO)-labeled chondrocytes by magnetic resonance imaging (MRI) for articular cartilage repair in minipig model was investigated. Results showed that chondrocytes were efficiently labeled by SPIO at optimal low dosages while maintaining essential cell properties. MRI SET2WI sequence revealed that marked hypointense signal void areas representing the transplanted labeled chondrocytes could be observed for at least 12 weeks. Histochemical staining confirmed the presence of Prussian blue-positive cells and GFP-positive cells at the hypointense signal void areas. These findings provide knowledge on the in vivo tracking of SPIO labeled chondrocytes on cartilage repair following transplantation in minipigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arbab, A. S., L. A. Bashaw, B. R. Miller, E. K. Jordan, J. W. M. Bulte, J. A. Frank, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130, 2003.

    Article  PubMed  CAS  Google Scholar 

  2. Arbab, A. S., L. A. Bashaw, B. R. Miller, E. K. Jordan, B. K. Lewis, H. Kalish, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846, 2003.

    Article  PubMed  Google Scholar 

  3. Arbab, A. S., V. Frenkel, S. D. Pandit, S. A. Anderson, G. T. Yocum, M. Bur, et al. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24:671–678, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Browne, J. E., and T. P. Branch. Surgical alternatives for treatment of articular cartilage lesions. J. Am. Acad. Orthop. Surg. 8:180–189, 2000.

    PubMed  CAS  Google Scholar 

  5. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: degeneration and osteoarthritis, repair, regeneration and transplantation. Instr. Course Lect. 47:487–504, 1998.

    PubMed  CAS  Google Scholar 

  6. Bulte, J. W., I. D. Duncan, and J. A. Frank. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J. Cereb. Blood Flow Metab. 22:899–907, 2002.

    Article  PubMed  Google Scholar 

  7. Chen, W.-C., C.-L. Yao, Y.-H. Wei, et al. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology 63:13–23, 2011.

    Article  PubMed  Google Scholar 

  8. Duan, X., L. Yang, S. Dong, S. W. Dong, R. Xin, G. X. Chen, et al. Characterization of EGFP-labeled mesenchymal stem cells and redistribution of allogeneic cells after subcutaneous implantation. Arch. Orthop. Trauma Surg. 128:751–759, 2008.

    Article  PubMed  Google Scholar 

  9. Foldager, C. B., M. Pedersen, S. Ringgaard, et al. Chondrocyte gene expression is affected by very small iron oxide particles-labeling in long-term in vitro MRI tracking. J. Magn. Reson. Imaging 33(3):724–730, 2011.

    Google Scholar 

  10. Frank, J. A., B. R. Miller, A. S. Arbab, H. A. Zywicke, E. K. Jordan, B. K. Lewis, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487, 2003.

    Article  PubMed  Google Scholar 

  11. Gotterbarm, T., S. J. Breusch, U. Schneider, and M. Jung. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab. Anim. 42(1):71–82, 2008.

    Article  PubMed  CAS  Google Scholar 

  12. Heymer, A., D. Haddad, M. Weber, U. Gbureck, P. M. Jakob, J. Eulert, and U. Nöth. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials 29(10):1473–1483, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, and I. Martin. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell. Biochem. 81:368, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Jing, X. H., L. Yang, X. J. Duan, B. Xie, W. Chen, Z. Li, et al. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Jt Bone Spine 75:432–438, 2008.

    Article  Google Scholar 

  15. Li, Y., S. R. Tew, A. M. Russell, K. R. Gonzalez, T. E. Hardingham, and R. E. Hawkins. Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng. 10:575, 2004.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, G., Z. Wang, L. Jian, C. Xia, F. Gao, Q. Gong, et al. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials 32:528–537, 2011.

    Article  PubMed  Google Scholar 

  17. Liu, Gang, Zhiyong Wang, Lu Jian, et al. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterial 32:528–537, 2011.

    Article  Google Scholar 

  18. Mierisch, C. M., H. A. Wilson, M. A. Turner, T. A. Milbrandt, L. Berthoux, M. L. Hammarskjold, et al. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J. Bone Joint Surg. Am. 85-A:1757–1767, 2003.

    Google Scholar 

  19. Miot, S., R. Gianni-Barrera, K. Pelttari, et al. In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction. Tissue Eng. Part C 16(1):11–21, 2010.

    Article  CAS  Google Scholar 

  20. O’Driscoll, S. The healing and regeneration of articular cartilage. J. Bone Joint Surg. A 80:1795–1812, 1998.

    Google Scholar 

  21. Pieter, B., S. P. Jeroen, T. van Tienen, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects—a study in rabbits. Biomaterials 24:3255–3263, 2003.

    Article  Google Scholar 

  22. Ramaswamy, S., J. B. Greco, and M. C. Uluer. Magnetic resonance imaging of chondrocytes labeled with suerparamagnetic iron oxide nanoparticles in tissue-engineering cartilage. Tissue Eng. Part A 15(12):3899–3910, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Riemer, J., H. H. Hoepken, H. Czerwinska, S. R. Robinson, and R. Dringen. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal. Biochem. 331(2):370–375, 2004.

    Article  PubMed  CAS  Google Scholar 

  24. Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21(32–33):3307–3329, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Stoddart, M. J., S. Grad, D. Eglin, and M. Alini. Cells and biomaterials in cartilage tissue engineering. Regen. Med. 4:81–98, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Widuchowski, W., J. Widuchowski, and T. Trzaska. Articular cartilage defects: study of 25,124 knee arthrosscopies. Knee 14(3):177–182, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 30870639, 30872619). The authors thank professor Ai Hua (National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China) for his generous gift of PEI/SPIO.

Conflict of interest

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, F., Zhang, Y. et al. In Vivo Tracking of Superparamagnetic Iron Oxide Nanoparticle Labeled Chondrocytes in Large Animal Model. Ann Biomed Eng 40, 2568–2578 (2012). https://doi.org/10.1007/s10439-012-0621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0621-5

Keywords

Navigation