Skip to main content
Log in

Pore Geometry Regulates Early Stage Human Bone Marrow Cell Tissue Formation and Organisation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Porous architecture has a dramatic effect on tissue formation in porous biomaterials used in regenerative medicine. However, the wide variety of 3D structures used indicates there is a clear need for the optimal design of pore architecture to maximize tissue formation and ingrowth. Thus, the aim of this study was to characterize initial tissue growth solely as a function of pore geometry. We used an in vitro system with well-defined open pore slots of varying width, providing a 3D environment for neo-tissue formation while minimizing nutrient limitations. Results demonstrated that initial tissue formation was strongly influenced by pore geometry. Both velocity of tissue invasion and area of tissue formed increased as pores became narrower. This is associated with distinct patterns of actin organisation and alignment depending on pore width, indicating the role of active cell generated forces. A mathematical model based on curvature driven growth successfully predicted both shape of invasion front and constant rate of growth, which increased for narrower pores as seen in experiments. Our results provide further evidence for a front based, curvature driven growth mechanism depending on pore geometry and tissue organisation, which could provide important clues for 3D scaffold design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Andriotis, O., O. Katsamenis, D. Mouzakis, and N. Bouropoulos. Preparation and characterization of bioceramics produced from calcium phosphate cements. Cryst. Res. Technol. 45:239–243, 2010.

    Article  CAS  Google Scholar 

  2. Aratyn-Schaus, Y., P. W. Oakes, and M. L. Gardel. Dynamic and structural signatures of lamellar actomyosin force generation. Mol. Biol. Cell 22:1330–1339, 2010.

    Article  Google Scholar 

  3. Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Bidan C. M., K. P. Kommareddy, M. Rumpler, P. Kollmannsberger, Y. J. M. Bréchet, P. Fratzl, and J. W. C. Dunlop. How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7(5): e36336, 2012. doi:10.1371/journal.pone.0036336.

  5. Biton, Y. Y., and S. A. Safran. The cellular response to curvature-induced stress. Phys. Biol. 6:046010, 2009.

    Article  CAS  PubMed  Google Scholar 

  6. Blankenship, J. T., S. T. Backovic, J. S. Sanny, O. Weitz, and J. A. Zallen. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11:459–470, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Bohner, M., Y. Loosli, G. Baroud, and D. Lacroix. Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 7:478–484, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Bowers, K. T., J. C. Keller, B. A. Randolph, D. G. Wick, and C. M. Michaels. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int. J. Oral Maxillofac. Implants 7:302–310, 1992.

    CAS  PubMed  Google Scholar 

  9. Buxboim, A., I. L. Ivanovska, and D. E. Discher. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J. Cell Sci. 123:297–308, 2010.

    Article  CAS  PubMed  Google Scholar 

  10. Dalby, M. J., N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. Wilkinson, and R. O. Oreffo. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6:997–1003, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Dawson, J. I., and R. O. C. Oreffo. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch. Biochem. Biophys. 473:124–131, 2008.

    Article  CAS  PubMed  Google Scholar 

  12. Deligianni, D., N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–1251, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Deshpande, V. S., R. M. McMeeking, and A. G. Evans. A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. R. Soc. A. Math. Phys. Eng. Sci. 463:787–815, 2007.

    Article  CAS  Google Scholar 

  14. Ducheyne, P., and Q. Qiu. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303, 1999.

    Article  CAS  PubMed  Google Scholar 

  15. Elaine, N., and K. H. Marieb. Human Anatomy & Physiology. San Francisco, CA: Pearson Benjamin Cummings, 2010.

  16. Engelmayr, Jr., G. C., G. D. Papworth, S. C. Watkins, J. E. Mayer, Jr., and M. S. Sacks. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39:1819–1831, 2006.

    Article  PubMed  Google Scholar 

  17. Frosch, K. H., F. Barvencik, C. H. Lohmann, V. Viereck, H. Siggelkow, J. Breme, K. Dresing, and K. M. Sturmer. Migration, matrix production and lamellar bone formation of human osteoblast-like cells in porous titanium implants. Cells Tissues Organs. 170:214–227, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Frosch, K. H., F. Barvencik, V. Viereck, C. H. Lohmann, K. Dresing, J. Breme, E. Brunner, and K. M. Sturmer. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J. Biomed. Mater. Res. A. 68:325–334, 2004.

    Article  PubMed  Google Scholar 

  19. Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. USA 94:9114–9118, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Han, S. J., and N. J. Sniadecki. Simulations of the contractile cycle in cell migration using a bio-chemical-mechanical model. Comput. Methods Biomech. Biomed. Eng. 14:459–468, 2011.

    Article  Google Scholar 

  21. Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103, 2002.

    Article  CAS  PubMed  Google Scholar 

  22. Hulbert, S. F., F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling. Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 4:433–456, 1970.

    Article  CAS  PubMed  Google Scholar 

  23. Kapfer, S. C., S. T. Hyde, K. Mecke, C. H. Arns, and G. E. Schroder-Turk. Minimal surface scaffold designs for tissue engineering. Biomaterials 32:6875–6882, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Kong, H. J., T. R. Polte, E. Alsberg, and D. J. Mooney. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl. Acad. Sci. U S A 102:4300–4305, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Lamolle, S. F., M. Monjo, M. Rubert, H. J. Haugen, S. P. Lyngstadaas, and J. E. Ellingsen. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 30:736–742, 2009.

    Article  CAS  PubMed  Google Scholar 

  27. Li, B., F. Li, K. M. Puskar, and J. H. Wang. Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J. Biomech. 42:1622–1627, 2009.

    Article  PubMed  Google Scholar 

  28. Lincks, J., B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean, and Z. Schwartz. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19:2219–2232, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Lohmann, C. H., L. F. Bonewald, M. A. Sisk, V. L. Sylvia, D. L. Cochran, D. D. Dean, B. D. Boyan, and Z. Schwartz. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J. Bone Miner. Res. 15:1169–1180, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Lossdörfer, S., Z. Schwartz, L. Wang, C. Lohmann, J. Turner, M. Wieland, D. Cochran, and B. Boyan. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res., Part A 70:361–369, 2004.

    Article  Google Scholar 

  31. Lu, J., B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, and B. Thierry. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J. Mater. Sci. Mater. Med. 10:111–120, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Mathur, A., S. W. Moore, M. P. Sheetz, and J. Hone. The role of feature curvature in contact guidance. Acta Biomater. 8:2595–2601, 2012.

    Article  PubMed  Google Scholar 

  33. Mege, R. M., J. Gavard, and M. Lambert. Regulation of cell–cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18:541–548, 2006.

    Article  CAS  PubMed  Google Scholar 

  34. Melchels, F. P. W., A. Barradas, C. A. Van Blitterswijk, J. De Boer, J. Feijen, and D. W. Grijpma. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6:4208–4217, 2010.

    Article  CAS  PubMed  Google Scholar 

  35. Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science 322:1502–1505, 2008.

    Article  CAS  PubMed  Google Scholar 

  36. Moroni, L., J. R. de Wijn, and C. A. van Blitterswijk. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27:974–985, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Murray, J. D. Spatial models and biomedical applications. Math. Biol. 18:468–490, 2003.

    Google Scholar 

  38. Nathan, A. S., B. M. Baker, N. L. Nerurkar, and R. L. Mauck. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 7:57–66, 2011.

    Article  CAS  PubMed  Google Scholar 

  39. Nelson, C. M. Geometric control of tissue morphogenesis. Biochim. Biophys. Acta 1793:903–910, 2009.

    Article  CAS  PubMed  Google Scholar 

  40. Nelson, C. M., R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. U S A 102:11594–11599, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Pamula, E., L. Bacakova, E. Filova, J. Buczynska, P. Dobrzynski, L. Noskova, and L. Grausova. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J. Mater. Sci. Mater. Med. 19:425–435, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Peyton, S. R., C. M. Ghajar, C. B. Khatiwala, and A. J. Putnam. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem. Biophys. 47:300–320, 2007.

    Article  CAS  PubMed  Google Scholar 

  43. Ruiz, S. A., and C. S. Chen. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26:2921–2927, 2008.

    Article  PubMed  Google Scholar 

  44. Rumpler, M., A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl. The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5:1173–1180, 2008.

    Article  PubMed  Google Scholar 

  45. Sabetrasekh, R., H. Tiainen, J. Reseland, J. Will, J. Ellingsen, S. Lyngstadaas, and H. Haugen. Impact of trace elements on biocompatibility of titanium scaffolds. Biomed. Mater. 5:015003, 2010.

    Article  CAS  Google Scholar 

  46. Sanz-Herrera, J. A., P. Moreo, J. M. Garcia-Aznar, and M. Doblare. On the effect of substrate curvature on cell mechanics. Biomaterials 30:6674–6686, 2009.

    Article  CAS  PubMed  Google Scholar 

  47. Sengers, B. G., C. P. Please, M. Taylor, and R. O. Oreffo. Experimental-computational evaluation of human bone marrow stromal cell spreading on trabecular bone structures. Ann. Biomed. Eng. 37:1165–1176, 2009.

    Article  CAS  PubMed  Google Scholar 

  48. Sundelacruz, S., and D. L. Kaplan. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin. Cell Dev. Biol. 20:646–655, 2009.

    Article  CAS  PubMed  Google Scholar 

  49. Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. U S A 100(4):1484–1489, 2003.

    Article  CAS  PubMed  Google Scholar 

  50. Tare, R. S., J. C. Babister, J. Kanczler, and R. O. Oreffo. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol. Cell. Endocrinol. 288:11–21, 2008.

    Article  CAS  PubMed  Google Scholar 

  51. Treiser, M. D., E. H. Yang, S. Gordonov, D. M. Cohen, I. P. Androulakis, J. Kohn, C. S. Chen, and P. V. Moghe. Cytoskeleton-based forecasting of stem cell lineage fates. Proc. Natl. Acad. Sci. U S A 107:610–615, 2010.

    Article  CAS  PubMed  Google Scholar 

  52. Tsuruga, E., H. Takita, H. Itoh, Y. Wakisaka, and Y. Kuboki. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121:317–324, 1997.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, J. H., F. Jia, T. W. Gilbert, and S. L. Woo. Cell orientation determines the alignment of cell-produced collagenous matrix. J. Biomech. 36:97–102, 2003.

    Article  PubMed  Google Scholar 

  54. Tambe D. T., C. Corey Hardin, T. E. Angelini, K. Rajendran, C. Y. Park, X. Serra-Picamal, E. H. Zhou, M. H. Zaman, J. P. Butler, D. A. Weitz, J. J. Fredberg, and X. Trepat. Collective cell guidance by cooperative intercellular forces. Nat. Mater.

  55. Yang, S. F., H. Y. Yang, X. P. Chi, J. R. G. Evans, I. Thompson, R. J. Cook, and P. Robinson. Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater. Des. 29:1802–1809, 2008.

    Article  CAS  Google Scholar 

  56. Zeltinger, J., J. K. Sherwood, D. A. Graham, R. Mueller, and L. G. Griffith. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 7:557–572, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr R. Tare and the Bone and Joint Research Group in Southampton for their assistance and for providing the cell sample. Dr C. Catt was supported by Symbiosis project funding, EPSRC EP/F032994/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Knychala.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Electronic supplementary material

10439_2013_748_MOESM1_ESM.tif

Fig. S1 (a) Example of a 3D reconstruction of the actin network in a 400 μm pore (70 μm z-stack, pore walls were indicated manually for illustrative purposes only). (b) Perpendicular cross section along the y–z plane showing the thin cell layer at the immediate front. (c) Longitudinal cross section along (x–z) plane showing tissue thickening away from the front of migration (TIFF 1580 kb)

10439_2013_748_MOESM2_ESM.avi

Fig. S2 & S3 Time lapse video recorded for 10 h, pictures taken every 20 min for 200 μm (S2) and 500 μm (S3) (AVI 22,715 kb)

Supplementary material 3 (AVI 16,376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knychala, J., Bouropoulos, N., Catt, C.J. et al. Pore Geometry Regulates Early Stage Human Bone Marrow Cell Tissue Formation and Organisation. Ann Biomed Eng 41, 917–930 (2013). https://doi.org/10.1007/s10439-013-0748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0748-z

Keywords

Navigation