Skip to main content
Log in

On the Characterization of a Non-Newtonian Blood Analog and Its Response to Pulsatile Flow Downstream of a Simplified Stenosis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Particle image velocimetry (PIV) was used to investigate the influence of a non-Newtonian blood analog of aqueous xanthan gum on flow separation in laminar and transitional environments and in both steady and pulsatile flow. Initial steady pressure drop measurements in laminar and transitional flow for a Newtonian analog showed an extension of laminar behavior to Reynolds number (Re) ~ 2900 for the non-Newtonian case. On a macroscale level, this showed good agreement with porcine blood. Subsequently, PIV was used to measure flow patterns and turbulent statistics downstream of an axisymmetric stenosis in the aqueous xanthan gum solution and for a Newtonian analog at Re ~ 520 and Re ~ 1250. The recirculation length for the non-Newtonian case was reduced at Re ~ 520 resultant from increased viscosity at low shear strain rates. At Re ~ 1250, peak turbulent intensities and turbulent shear stresses were dampened by the non-Newtonian fluid in close proximity to the blockage outlet. Although the non-Newtonian case’s recirculation length was increased at peak pulsatile flow, turbulent shear stress was found to be elevated for the Newtonian case downstream from the blockage, suggesting shear layer fragmentation and radial transport. Our findings conclude that the xanthan gum elastic polymer prolongs flow stabilization, which in turn emphasizes the importance of non-Newtonian blood characteristics on the resulting flow patterns in such cardiovascular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Agarwal, U. S., A. Dutta, and R. A. Mashelkar. Migration of macromolecules under flow: the physical origin and engineering implications. Chem. Eng. Sci. 49:1693–1717, 1994.

    Article  CAS  Google Scholar 

  2. Ahmed, S. A., and D. P. Giddens. Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J. Biomech. 16:505–516, 1983.

    Article  CAS  PubMed  Google Scholar 

  3. Bewersdorff, H. W., and R. P. Singh. Rheological and drag reduction characteristics of xanthan gum solutions. Rheol. Acta 27:617–627, 1988.

    Article  CAS  Google Scholar 

  4. Bluestein, D., C. Gutierrez, M. Londono, and R. T. Schoephoerster. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann. Biomed. Eng. 27:763–773, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Bortolotto, L. A., O. Hanon, G. Franconi, P. Boutouyrie, S. Legrain, and X. Girerd. The aging process modifies the distensibility of elastic but not muscular arteries. Hypertension 34:889–892, 1999.

    Google Scholar 

  6. Brooks, D. E., J. W. Goodwin, and G. V. F. Seaman. Interactions among erythrocytes under shear. J. Appl. Physiol. 28:172–177, 1970.

    Google Scholar 

  7. Brookshier, K. A., and J. M. Tarbell. Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin. Biorheology 30:107–116, 1993.

    CAS  PubMed  Google Scholar 

  8. Cavazutti, M., M. A. Atherton, M. W. Collins, and G. S. Barozzi. Non-Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Proc. Inst. Mech. Eng. Part H 225:597–609, 2011.

    Google Scholar 

  9. Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.

    Article  PubMed  Google Scholar 

  10. Chien, S. Shear dependence of effective cell volume as a determination of blood viscosity. Science 168:977–979, 1970.

    Article  CAS  PubMed  Google Scholar 

  11. Chiu, J.-J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–287, 2011.

    Google Scholar 

  12. Choi, H. W., and A. I. Barakat. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Biorheology 42:493–509, 2005.

    PubMed  Google Scholar 

  13. Chung, J. S., and W. P. Graebel. Laser anemometer measurements of turbulence in non-Newtonian pipe flows. Phys. Fluids 15:546–554, 1972.

    Article  Google Scholar 

  14. Cokelet, G. R., and H. J. Meiselman. Macro- and micro-rheological properties of blood. In: Handbook of Hemorheology and Hemodynamics, edited by O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman. Amsterdam: IOS Press, 2007, pp. 45–71.

    Google Scholar 

  15. Ghalichi, F., X. Deng, A. De Champlain, Y. Douville, M. King, and R. Guidoin. Low Reynolds number turbulence modeling of blood flow in arterial stenosis. Biorheology 35:281–294, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Gijsen, F. J. H., F. N. van de Vosse, and J. D. Janssen. The influence of the non-Newtonian properties of blood on the flow in the large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32:601–608, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Han, S.-I., O. Marseille, C. Gehlan, and B. Blümich. Rheology of blood by NMR. J. Magn. Reson. 152:87–94, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Hemlinger, G., R. V. Geiger, S. Schreck, and R. M. Nerem. Effects of pulsatile flow on cultured vascular endothelium. J. Biomech. Eng. 113:123–131, 1991.

    Article  Google Scholar 

  19. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimations within the 50 cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126:431–437, 2004.

    Google Scholar 

  20. Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39:1116–1128, 2006.

    Article  PubMed  Google Scholar 

  21. Kähler, C. J., S. Scharnowski, and C. Cierpka. On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52:1641–1656, 2012.

    Article  Google Scholar 

  22. Kähler, C. J., U. Scholz, and J. Ortmanns. Wall-shear-stress and near wall turbulence measurements up to a single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41:327–341, 2006.

    Article  Google Scholar 

  23. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Mann, D. E., and J. M. Tarbell. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology 27:711–733, 1990.

    CAS  PubMed  Google Scholar 

  25. Mejia, J., R. Mongrain, and O. F. Bertrand. Accurate prediction of wall shear stress in a stented artery: Newtonian versus non-Newtonian models. J. Biomech. Eng. 133:074501, 2011.

    Google Scholar 

  26. Molla, M. M., and M. C. Paul. LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Med. Eng. Phys. 34:1079–1087, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries—Theoretical, Experimental and Clinical Perspectives (5th ed.). London: Hodder Arnold, p. 616, 2005.

    Google Scholar 

  28. Pak, B., Y. I. Cho, and S. U. S. Choi. Separation and reattachment of non-Newtonian fluid flows in sudden expansion pipe. J. Non-Newton. Fluid 37:175–199, 1990.

    Article  CAS  Google Scholar 

  29. Pedley, T. J. The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, p. 446, 1980.

    Book  Google Scholar 

  30. Perktold, K., E. Thurner, and T. Kenner. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Med. Biol. Eng. Comput. 32:19–26, 1994.

    Article  CAS  PubMed  Google Scholar 

  31. Peterson, S. D., and M. W. Plesniak. The influence of inlet velocity profile and secondary flow on pulsatile flow in a model artery with stenosis. J. Fluid Mech. 616:263–301, 2008.

    Article  Google Scholar 

  32. Raffel, M., C. Willert, S. Wereley, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide. Berlin: Springer-Verlag, p. 448, 2007.

    Google Scholar 

  33. Razavi, A., E. Shirani, and M. R. Sadeghi. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44:2021–2030, 2011.

    Article  CAS  PubMed  Google Scholar 

  34. Schirmer, C. M., and A. M. Malek. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow. Neurosurgery 61:855–864, 2007.

    Google Scholar 

  35. Schram, G. A Practical Approach to Rheology and Rheometry. Karlsruhe: Gebrueder Haake GmbH, p. 291, 2000.

    Google Scholar 

  36. Shaaban, A. M., and A. J. Duerinckx. Wall shear stress and early atherosclerosis: a review. AJR 174:1657–1665, 2000.

    Article  CAS  PubMed  Google Scholar 

  37. Sousa, P. C., F. T. Pinho, M. S. N. Oliveira, and M. A. Alves. Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5:014108, 2011.

    Article  CAS  PubMed Central  Google Scholar 

  38. Stroud, J. S., S. A. Berger, and D. Saloner. Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J. Biomech. 33:443–455, 2000.

    Article  CAS  PubMed  Google Scholar 

  39. Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J. Biomech. Eng. 126:363–370, 2004.

    Article  PubMed  Google Scholar 

  40. Tickner, G. E., and A. H. Sacks. Engineering simulations of the viscous behavior of whole blood suspensions of flexible particles. Circ. Res. 25:389–400, 1969.

    Article  CAS  PubMed  Google Scholar 

  41. Topper, J. N., and M. A. Gimbrone, Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol. Med. Today 5:40–46, 1999.

    Article  CAS  PubMed  Google Scholar 

  42. Trip, R., D. J. Kuik, J. Westerweel, and C. Poelma. An experimental study of transitional pulsatile pipe flow. Phys. Fluids 24:014013, 2012.

    Article  Google Scholar 

  43. Varghese, S. S., and S. H. Frankel. Numerical modeling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Eng. 125:445–460, 2003.

    Article  PubMed  Google Scholar 

  44. Varghese, S. S., S. H. Frankel, and P. F. Fischer. Direct numerical simulation of stenotic flows part 1. Steady flow. J. Fluid Mech. 582:253–280, 2007.

    Article  Google Scholar 

  45. Varghese, S. S., S. H. Frankel, and P. F. Fischer. Direct numerical simulation of stenotic flows part 2. Pulsatile flow. J. Fluid Mech. 582:281–318, 2007.

    Article  Google Scholar 

  46. Vlastos, G., D. Lerche, B. Koch, O. Samba, and M. Pohl. The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions. Rheol. Acta. 36:160–172, 1997.

    CAS  Google Scholar 

  47. Walker, A. M., C. R. Johnston, and D. E. Rival. The quantification of hemodynamic parameters downstream of a Gianturco zenith stent wire using Newtonian and non-Newtonian analog fluids in a pulsatile flow environment. J. Biomech. Eng. 134:111001, 2012.

    Article  PubMed  Google Scholar 

  48. Wells, R. E., Jr., and E. W. Merrill. Shear rate dependence of the viscosity of whole blood and plasma. Science 133:763–764, 1961.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Lin Li for her assistance in the acquisition of pressure drop measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Walker.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, A.M., Johnston, C.R. & Rival, D.E. On the Characterization of a Non-Newtonian Blood Analog and Its Response to Pulsatile Flow Downstream of a Simplified Stenosis. Ann Biomed Eng 42, 97–109 (2014). https://doi.org/10.1007/s10439-013-0893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0893-4

Keywords

Navigation