Skip to main content
Log in

Effect of Hypertension on the Closing Dynamics and Lagrangian Blood Damage Index Measure of the B-Datum Regurgitant Jet in a Bileaflet Mechanical Heart Valve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We hypothesize that the formation of the closing vortex and subsequent b-datum regurgitation jet in bileaflet mechanical heart valves is governed by the magnitude of the driving mean aortic pressure (MAP), and that this sensitivity does impact the blood damage index (BDI) corresponding to platelet activation and lysis. High spatial resolution time resolved (1 kHz) as well as phase locked particle image velocimetry techniques captured the dynamic leaflet closure and regurgitation jet of a model 25 mm St. Jude Medical BMHV. Cell trajectories were estimated using Lagrangian particle tracking analysis while the leaflet kinematics was quantified by tracking the leaflet tip-position throughout closure. The non-principal as well as principal shear stress loading histories along each cell trajectory revealed BDI for platelet activation and lysis as a function of cell initial position, release time-point, and blood pressure. Results show that the leaflet closing time reduces by roughly 10 ms, in response to an increase in MAP by 40 mmHg. We report that higher MAP leads to a stronger b-datum vortex and jet formation. Platelet activation BDI lowers with a higher MAP due to reduction in exposure times despite an increase in principal shear stress experienced. Platelet lysis BDI however increases with higher MAP. Maximum BDI may occur for cells initially in the b-datum zone during the onset of leaflet closure. Our results provide a better understanding of BDI of the regurgitant b-datum jet and sheds light on the potential importance of blood damage testing under hypertensive conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

BMHV:

Bileaflet mechanical heart valve

SJM:

St. Jude Medical

PIV:

Particle image velocimetry

TR-PIV:

Time-resolved particle image velocimetry

MAP:

Mean aortic pressure

NBP:

Normal blood pressure

D:

Diameter of aorta

HT:

Hypertension

References

  1. Ashikhmina, E. A., H. V. Schaff, J. A. Dearani, T. M. Sundt, R. M. Suri, S. J. Park, H. M. Burkhart, Z. Li, and R. C. Daly. Aortic valve replacement in the elderly determinants of late outcome. Circulation 124:1070–1078, 2011.

    Article  PubMed  Google Scholar 

  2. Bellofiore, A., and N. J. Quinlan. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann. Biomed. Eng. 39:2417–2429, 2011.

    Article  PubMed  Google Scholar 

  3. Black, M. M., and P. J. Drury. Mechanical and other problems of artificial valves. Curr. Top. Pathol. 86:127–159, 1994.

    Article  CAS  PubMed  Google Scholar 

  4. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35:1533–1540, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122:125–134, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Cannegieter, S. C., F. R. Rosendaal, and E. Briet. Thromboembolic and bleeding complications in patients with mechanical heart-valve prostheses. Circulation 89:635–641, 1994.

    Article  CAS  PubMed  Google Scholar 

  7. Chandran, K. B., and S. Aluri. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation. Ann. Biomed. Eng. 25:926–938, 1997.

    CAS  PubMed  Google Scholar 

  8. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105, 2007.

    Article  Google Scholar 

  9. Dasi, L. P., D. W. Murphy, A. Glezer, and A. P. Yoganathan. Passive flow control of bileaflet mechanical heart valve leakage flow. J. Biomech. 41:1166–1173, 2008.

    Article  PubMed  Google Scholar 

  10. Dasi, L. P., H. A. Simon, P. Sucosky, and A. P. Yoganathan. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36:225–237, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ellis, J. T., T. M. Wick, and A. P. Yoganathan. Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J. Heart Valve Dis. 7:376–386, 1998.

    CAS  PubMed  Google Scholar 

  12. Emery, R. W., A. M. Emery, G. V. Raikar, and J. G. Shake. Anticoagulation for mechanical heart valves: a role for patient based therapy. J. Thromb. Thrombolysis 25:18–25, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart-valve prostheses—invitro comparison of 25 aortic valves. Int. J. Artif. Organs 13:300–306, 1990.

    CAS  PubMed  Google Scholar 

  14. Gilljeong, C., and K. B. Chandran. Dynamics of a mechanical monoleaflet heart-valve prosthesis in the closing phase—effect of squeeze film. Ann. Biomed. Eng. 23:189–197, 1995.

    Article  CAS  Google Scholar 

  15. Goubergrits, L. Numerical modeling of blood damage: current status, challenges and future prospects. Expert Rev. Med. Devices 3:527–531, 2006.

    Article  PubMed  Google Scholar 

  16. Goubergrits, L., and K. Affeld. Numerical estimation of blood damage in artificial organs. Artif. Organs 28:499–507, 2004.

    Article  PubMed  Google Scholar 

  17. Govindarajan, V., H. S. Udaykumar, L. H. Herbertson, S. Deutsch, K. B. Manning, and K. B. Chandran. Impact of design parameters on bileaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 18:535–545, 2009.

    PubMed Central  PubMed  Google Scholar 

  18. Grigioni, M., C. Daniele, U. Morbiducci, G. D’Avenio, G. Di Benedetto, and V. Barbaro. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif. Organs 28:467–475, 2004.

    Article  PubMed  Google Scholar 

  19. Grigioni, M., U. Morbiducci, G. D’Avenio, G. Di Benedetto, and C. Del Gaudio. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model. Mechanobiol. 4:249–260, 2005.

    Article  PubMed  Google Scholar 

  20. Herbertson, L. H., S. Deutsch, and K. B. Manning. Near valve flows and potential blood damage during closure of a bileaflet mechanical heart valve. J. Biomech. Eng. 133:094507, 2011.

    Article  CAS  PubMed  Google Scholar 

  21. Lamson, T. C., G. Rosenberg, D. B. Geselowitz, S. Deutsch, D. R. Stinebring, J. A. Frangos, and J. M. Tarbell. Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J. 39:M634, 1993.

    Article  Google Scholar 

  22. Leo, H. L., L. P. Dasi, J. Carberry, H. A. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34:936–952, 2006.

    Article  PubMed  Google Scholar 

  23. Linde, T., K. F. Hamilton, E. C. Navalon, T. Schmitz-Rode, and U. Steinseifer. Aortic root compliance influences hemolysis in mechanical heart valve prostheses: an in vitro study. Int. J. Artif. Organs 35:495–502, 2012.

    Article  PubMed  Google Scholar 

  24. Manning, K. B., L. H. Herbertson, A. A. Fontaine, and S. Deutsch. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage. J. Biomech. Eng. 130:041001, 2008.

    Article  PubMed  Google Scholar 

  25. Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the st. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27:840–846, 2003.

    Article  PubMed  Google Scholar 

  26. Mecozzi, G., A. D. Milano, M. De Carlo, F. Sorrentino, S. Pratali, C. Nardi, and U. Bortolotti. Intravascular hemolysis in patients with new-generation prosthetic heart valves: a prospective study. J. Thorac. Cardiovasc. Surg. 123:550–556, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54:64–72, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rieck, A. E., D. Cramariuc, K. Boman, C. Gohlke-Barwolf, E. M. Staal, M. T. Lonnebakken, A. B. Rossebo, and E. Gerdts. Hypertension in aortic stenosis implications for left ventricular structure and cardiovascular events. Hypertension 60:90–97, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Vongpatanasin, W., L. D. Hillis, and R. A. Lange. Medical progress—prosthetic heart valves. N. Engl. J. Med. 335:407–416, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. Yap, C. H., L. P. Dasi, and A. P. Yoganathan. Dynamic hemodynamic energy loss in normal and stenosed aortic valves. J. Biomech. Eng. 132:021005, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge support from the American Heart Association’s Scientist Development Grant #11SDG5170011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Additional information

Associate Editor Stefan Jockenhoevel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 85939 kb)

Supplementary material 2 (MP4 86640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forleo, M., Dasi, L.P. Effect of Hypertension on the Closing Dynamics and Lagrangian Blood Damage Index Measure of the B-Datum Regurgitant Jet in a Bileaflet Mechanical Heart Valve. Ann Biomed Eng 42, 110–122 (2014). https://doi.org/10.1007/s10439-013-0896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0896-1

Keywords

Navigation