Skip to main content
Log in

Use of Flow, Electrical, and Mechanical Stimulation to Promote Engineering of Striated Muscles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The field of tissue engineering involves design of high-fidelity tissue substitutes for predictive experimental assays in vitro and cell-based regenerative therapies in vivo. Design of striated muscle tissues, such as cardiac and skeletal muscle, has been particularly challenging due to a high metabolic demand and complex cellular organization and electromechanical function of the native tissues. Successful engineering of highly functional striated muscles may thus require creation of biomimetic culture conditions involving medium perfusion, electrical and mechanical stimulation. When optimized, these external cues are expected to synergistically and dynamically activate important intracellular signaling pathways leading to accelerated muscle growth and development. This review will discuss the use of different types of tissue culture bioreactors aimed at providing conditions for enhanced structural and functional maturation of engineered striated muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aagaard, P., E. B. Simonsen, J. L. Andersen, P. Magnusson, and P. Dyhre-Poulsen. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 93:1318–1326, 2002.

    PubMed  Google Scholar 

  2. Agarwal, A., J. A. Goss, A. Cho, M. L. McCain, and K. K. Parker. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13:3599–3608, 2013.

    CAS  PubMed  Google Scholar 

  3. Akar, F. G., R. D. Nass, S. Hahn, E. Cingolani, M. Shah, G. G. Hesketh, D. DiSilvestre, R. S. Tunin, D. A. Kass, and G. F. Tomaselli. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 293:H1223–H1230, 2007.

    CAS  PubMed  Google Scholar 

  4. Akhyari, P., P. W. Fedak, R. D. Weisel, T. Y. Lee, S. Verma, D. A. Mickle, and R. K. Li. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106:I137–I142, 2002.

    PubMed  Google Scholar 

  5. Akins, R. E., N. A. Schroedl, S. R. Gonda, and C. R. Hartzell. 1997. Neonatal rat heart cells cultured in simulated microgravity. In Vitro Cell Dev. Biol. 33:337–343.

  6. Bach, A. D., J. P. Beier, J. Stern-Staeter, and R. E. Horch. Skeletal muscle tissue engineering. J. Cell Mol. Med. 8:413–422, 2004.

    CAS  PubMed  Google Scholar 

  7. Barash, Y., T. Dvir, P. Tandeitnik, E. Ruvinov, H. Guterman, and S. Cohen. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng. Part C Methods 16:1417–1426, 2010.

    CAS  PubMed  Google Scholar 

  8. Bardouille, C., J. Lehmann, P. Heimann, and H. Jockusch. Growth and differentiation of permanent and secondary mouse myogenic cell lines on microcarriers. Appl. Microbiol. Biotechnol. 55:556–562, 2001.

    CAS  PubMed  Google Scholar 

  9. Bian, W., and N. Bursac. Tissue engineering of functional skeletal muscle: challenges and recent advances. IEEE Eng. Med. Biol. Mag. 27:109–113, 2008.

    PubMed Central  PubMed  Google Scholar 

  10. Bian, W., B. Liau, N. Badie, and N. Bursac. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat. Protoc. 4:1522–1534, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Birla, R. K., Y. C. Huang, and R. G. Dennis. Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng. 13:2239–2248, 2007.

    CAS  PubMed  Google Scholar 

  12. Boonen, K. J., M. L. Langelaan, R. B. Polak, D. W. van der Schaft, F. P. Baaijens, and M. J. Post. Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J. Biomech. 43:1514–1521, 2010.

    PubMed  Google Scholar 

  13. Boublik, J., H. Park, M. Radisic, E. Tognana, F. Chen, M. Pei, G. Vunjak-Novakovic, and L. E. Freed. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng. 11:1122–1132, 2005.

    CAS  PubMed  Google Scholar 

  14. Boudou, T., W. R. Legant, A. B. Mu, M. A. Borochin, N. Thavandiran, M. Radisic, P. W. Zandstra, J. A. Epstein, K. B. Margulies, and C. S. Chen. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. Part A 18:910–919, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Brevet, A., E. Pinto, J. Peacock, and F. E. Stockdale. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures. Science 193:1152–1154, 1976.

    CAS  PubMed  Google Scholar 

  16. Brown, M. A., R. K. Iyer, and M. Radisic. Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol. Prog. 24:907–920, 2008.

    CAS  PubMed  Google Scholar 

  17. Bryant, S. J., J. L. Cuy, K. D. Hauch, and B. D. Ratner. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 28:2978–2986, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Buller, A. J., J. C. Eccles, and R. M. Eccles. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol. 150:417–439, 1960.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Burkholder, T. J. Mechanotransduction in skeletal muscle. Front Biosci. 12:174–191, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bursac, N., Y. Loo, K. Leong, and L. Tung. Novel anisotropic engineered cardiac tissues: studies of electrical propagation. Biochem. Biophys. Res. Commun. 361:847–853, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Bursac, N., M. Papadaki, R. J. Cohen, F. J. Schoen, S. R. Eisenberg, R. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277:H433–H444, 1999.

    CAS  PubMed  Google Scholar 

  22. Bursac, N., M. Papadaki, J. A. White, S. R. Eisenberg, G. Vunjak-Novakovic, and L. E. Freed. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9:1243–1253, 2003.

    CAS  PubMed  Google Scholar 

  23. Candiani, G., S. A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F. M. Montevecchi, and S. Mantero. Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. J. Appl. Biomater. Biomech. 8:68–75, 2010.

    CAS  PubMed  Google Scholar 

  24. Carrier, R. L., M. Papadaki, M. Rupnick, F. J. Schoen, N. Bursac, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64:580–589, 1999.

    CAS  PubMed  Google Scholar 

  25. Carrier, R. L., M. Rupnick, R. Langer, F. J. Schoen, L. E. Freed, and G. Vunjak-Novakovic. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 8:175–188, 2002.

    CAS  PubMed  Google Scholar 

  26. Chaudhuri, O., and D. J. Mooney. Stem-cell differentiation: anchoring cell-fate cues. Nat. Mater. 11:568–569, 2012.

    CAS  PubMed  Google Scholar 

  27. Cheema, U., R. Brown, V. Mudera, S. Y. Yang, G. McGrouther, and G. Goldspink. Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle. J. Cell. Physiol. 202:67–75, 2005.

    CAS  PubMed  Google Scholar 

  28. Cheema, U., S. Y. Yang, V. Mudera, G. G. Goldspink, and R. A. Brown. 3-D in vitro model of early skeletal muscle development. Cell Motil. Cytoskeleton 54:226–236, 2003.

    CAS  PubMed  Google Scholar 

  29. Chen, H. C., and Y. C. Hu. Bioreactors for tissue engineering. Biotechnol. Lett. 28:1415–1423, 2006.

    CAS  PubMed  Google Scholar 

  30. Chen, M. Q., X. Xie, K. D. Wilson, N. Sun, J. C. Wu, L. Giovangrandi, and G. T. Kovacs. Current-controlled electrical point-source stimulation of embryonic stem cells. Cell. Mol. Bioeng. 2:625–635, 2009.

    PubMed Central  PubMed  Google Scholar 

  31. Cheng, M., M. Moretti, G. C. Engelmayr, and L. E. Freed. Insulin-like growth factor-I and slow, bi-directional perfusion enhance the formation of tissue-engineered cardiac grafts. Tissue Eng. Part A 15:645–653, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Chopra, A., V. Lin, A. McCollough, S. Atzet, G. D. Prestwich, A. S. Wechsler, M. E. Murray, S. A. Oake, J. Y. Kresh, and P. A. Janmey. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. J. Biomech. 45:824–831, 2012.

    PubMed Central  PubMed  Google Scholar 

  33. Chromiak, J. A., J. Shansky, C. Perrone, and H. H. Vandenburgh. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids. In Vitro Cell. Dev. Biol. Anim. 34:694–703, 1998.

    CAS  PubMed  Google Scholar 

  34. Chromiak, J. A., and H. H. Vandenburgh. Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation. Am. J. Physiol. 262:C1471–C1477, 1992.

    CAS  PubMed  Google Scholar 

  35. Chromiak, J. A., and H. H. Vandenburgh. Mechanical stimulation of skeletal muscle cells mitigates glucocorticoid-induced decreases in prostaglandin production and prostaglandin synthase activity. J. Cell. Physiol. 159:407–414, 1994.

    CAS  PubMed  Google Scholar 

  36. Connor, M. K., I. Irrcher, and D. A. Hood. Contractile activity-induced transcriptional activation of cytochrome C involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. J. Biol. Chem. 276:15898–15904, 2001.

    CAS  PubMed  Google Scholar 

  37. Corona, B. T., M. A. Machingal, T. Criswell, M. Vadhavkar, A. C. Dannahower, C. Bergman, W. Zhao, and G. J. Christ. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng. 18(1):1213–1228, 2012.

    Google Scholar 

  38. Costa, K. D., E. J. Lee, and J. W. Holmes. Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9:567–577, 2003.

    PubMed  Google Scholar 

  39. Dennis, R. G., B. Smith, A. Philp, K. Donnelly, and K. Baar. Bioreactors for guiding muscle tissue growth and development. Adv. Biochem. Eng. Biotechnol. 112:39–79, 2009.

    CAS  PubMed  Google Scholar 

  40. Donnelly, K., A. Khodabukus, A. Philp, L. Deldicque, R. G. Dennis, and K. Baar. A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng. Part C Methods 16:711–718, 2010.

    CAS  PubMed  Google Scholar 

  41. Dusterhoft, S., and D. Pette. Effects of electrically induced contractile activity on cultured embryonic chick breast muscle cells. Differentiation 44:178–184, 1990.

    CAS  PubMed  Google Scholar 

  42. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166:877–887, 2004.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Feng, Z., T. Matsumoto, Y. Nomura, and T. Nakamura. An electro-tensile bioreactor for 3-D culturing of cardiomyocytes. A bioreactor system that simulates the myocardium’s electrical and mechanical response in vivo. IEEE Eng. Med. Biol. Mag. 24:73–79, 2005.

    PubMed  Google Scholar 

  44. Fink, C., S. Ergun, D. Kralisch, U. Remmers, J. Weil, and T. Eschenhagen. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14:669–679, 2000.

    CAS  PubMed  Google Scholar 

  45. Flaibani, M., C. Luni, E. Sbalchiero, and N. Elvassore. Flow cytometric cell cycle analysis of muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor. Biotechnol. Prog. 25:286–295, 2009.

    CAS  PubMed  Google Scholar 

  46. Fredette, B. J., and L. T. Landmesser. A reevaluation of the role of innervation in primary and secondary myogenesis in developing chick muscle. Dev. Biol. 143:19–35, 1991.

    CAS  PubMed  Google Scholar 

  47. Freyssenet, D., M. K. Connor, M. Takahashi, and D. A. Hood. Cytochrome c transcriptional activation and mRNA stability during contractile activity in skeletal muscle. Am. J. Physiol. 277:E26–E32, 1999.

    CAS  PubMed  Google Scholar 

  48. Fuchs, J. R., B. A. Nasseri, and J. P. Vacanti. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 72:577–591, 2001.

    CAS  PubMed  Google Scholar 

  49. Furuta, A., S. Miyoshi, Y. Itabashi, T. Shimizu, S. Kira, K. Hayakawa, N. Nishiyama, K. Tanimoto, Y. Hagiwara, T. Satoh, K. Fukuda, T. Okano, and S. Ogawa. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ. Res. 98:705–712, 2006.

    CAS  PubMed  Google Scholar 

  50. Gilbert, P. M., K. L. Havenstrite, K. E. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Goldspink, G., A. Scutt, P. T. Loughna, D. J. Wells, T. Jaenicke, and G. F. Gerlach. Gene expression in skeletal muscle in response to stretch and force generation. Am. J. Physiol. 262:R356–R363, 1992.

    CAS  PubMed  Google Scholar 

  52. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.

    CAS  PubMed  Google Scholar 

  53. Gruver, C. L., F. DeMayo, M. A. Goldstein, and A. R. Means. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 133:376–388, 1993.

    CAS  PubMed  Google Scholar 

  54. Guo, X., M. Gonzalez, M. Stancescu, H. H. Vandenburgh, and J. J. Hickman. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials 32:9602–9611, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Hamalainen, N., and D. Pette. Slow-to-fast transitions in myosin expression of rat soleus muscle by phasic high-frequency stimulation. FEBS Lett. 399:220–222, 1996.

    CAS  PubMed  Google Scholar 

  56. Harris, A. J. Embryonic growth and innervation of rat skeletal muscles. I. Neural regulation of muscle fibre numbers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 293:257–277, 1981.

    CAS  PubMed  Google Scholar 

  57. Harrison, J. H., J. P. Merrill, and J. E. Murray. Renal homotransplantation in identical twins. Surg. Forum 6:432–436, 1956.

    CAS  PubMed  Google Scholar 

  58. Hinds, S., W. Bian, R. G. Dennis, and N. Bursac. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32:3575–3583, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Hornberger, T. A., and K. A. Esser. Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc. Nutr. Soc. 63:331–335, 2004.

    CAS  PubMed  Google Scholar 

  60. Hsu, Y. H., M. L. Moya, C. C. Hughes, S. C. George, and A. P. Lee. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13:2990–2998, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Huang, Y. C., R. G. Dennis, and K. Baar. Cultured slow vs. fast skeletal muscle cells differ in physiology and responsiveness to stimulation. Am. J. Physiol. Cell Physiol. 291:C11–C17, 2006.

    CAS  PubMed  Google Scholar 

  62. Huh, D., Y. S. Torisawa, G. A. Hamilton, H. J. Kim, and D. E. Ingber. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164, 2012.

    CAS  PubMed  Google Scholar 

  63. Kariya, K., L. R. Karns, and P. C. Simpson. Expression of a constitutively activated mutant of the beta-isozyme of protein kinase C in cardiac myocytes stimulates the promoter of the beta-myosin heavy chain isogene. J. Biol. Chem. 266:10023–10026, 1991.

    CAS  PubMed  Google Scholar 

  64. Kensah, G., I. Gruh, J. Viering, H. Schumann, J. Dahlmann, H. Meyer, D. Skvorc, A. Bar, P. Akhyari, A. Heisterkamp, A. Haverich, and U. Martin. A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng. Part C Methods 17:463–473, 2011.

    PubMed Central  PubMed  Google Scholar 

  65. Kensah, G., A. Roa Lara, J. Dahlmann, R. Zweigerdt, K. Schwanke, J. Hegermann, D. Skvorc, A. Gawol, A. Azizian, S. Wagner, L. S. Maier, A. Krause, G. Drager, M. Ochs, A. Haverich, I. Gruh, and U. Martin. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur. Heart J. 34:1134–1146, 2013.

    CAS  PubMed  Google Scholar 

  66. Khodabukus, A., and K. Baar. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng. Part C Methods 18:349–357, 2012.

    CAS  PubMed  Google Scholar 

  67. Komuro, I., S. Kudo, T. Yamazaki, Y. Zou, I. Shiojima, and Y. Yazaki. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 10:631–636, 1996.

    CAS  PubMed  Google Scholar 

  68. Kroehne, V., I. Heschel, F. Schugner, D. Lasrich, J. W. Bartsch, and H. Jockusch. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J. Cell Mol. Med. 12:1582–1838, 2008.

    Google Scholar 

  69. Kudoh, S., H. Akazawa, H. Takano, Y. Zou, H. Toko, T. Nagai, and I. Komuro. Stretch-modulation of second messengers: effects on cardiomyocyte ion transport. Prog. Biophys. Mol. Biol. 82:57–66, 2003.

    CAS  PubMed  Google Scholar 

  70. Kujala, K., A. Ahola, M. Pekkanen-Mattila, L. Ikonen, E. Kerkela, J. Hyttinen, and K. Aalto-Setala. Electrical field stimulation with a novel platform: effect on cardiomyocyte gene expression but not on orientation. Int. J. Biomed. Sci. 8:109–120, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Kumar, A., R. Murphy, P. Robinson, L. Wei, and A. M. Boriek. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB J. 18:1524–1535, 2004.

    CAS  PubMed  Google Scholar 

  72. Freed, L. E., and G. Vunjak-Novakovic. Tissue engineering bioreactors. In Principles of Tissue Engineering. New York: Academic Press, 2000.

  73. Lammerding, J., R. D. Kamm, and R. T. Lee. Mechanotransduction in cardiac myocytes. Ann. N. Y. Acad. Sci. 1015:53–70, 2004.

    PubMed  Google Scholar 

  74. Lanza, R. P., R. Langer, and J. Vacanti. Principles of tissue engineering. In Principles of Tissue Engineering. San Diego: Academic Press, 2000.

  75. Lasher, R. A., A. Q. Pahnke, J. M. Johnson, F. B. Sachse, and R. W. Hitchcock. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype. J. Tissue Eng. 3:1–15, 2012.

    Google Scholar 

  76. Li, Z., X. Guo, S. Matsushita, and J. Guan. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials 32:3220–3232, 2011.

    CAS  PubMed  Google Scholar 

  77. Liao, I. C., J. B. Liu, N. Bursac, and K. W. Leong. Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Cell. Mol. Bioeng. 1:133–145, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Liau, B., N. Christoforou, K. W. Leong, and N. Bursac. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 32:9180–9187, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Lieu, D. K., J. D. Fu, N. Chiamvimonvat, K. C. Tung, G. P. McNerney, T. Huser, G. Keller, C. W. Kong, and R. A. Li. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Arrhythm. Electrophysiol. 6:191–201, 2013.

    PubMed Central  PubMed  Google Scholar 

  80. Liu, M., S. Montazeri, T. Jedlovsky, R. Van Wert, J. Zhang, R. K. Li, and J. Yan. Bio-stretch, a computerized cell strain apparatus for three-dimensional organotypic cultures. In Vitro Cell. Dev. Biol. Anim. 35:87–93, 1999.

    CAS  PubMed  Google Scholar 

  81. Loughna, P. T., S. Izumo, G. Goldspink, and B. Nadal-Ginard. Disuse and passive stretch cause rapid alterations in expression of developmental and adult contractile protein genes in skeletal muscle. Development 109:217–223, 1990.

    CAS  PubMed  Google Scholar 

  82. Machingal, M. A., B. T. Corona, T. J. Walters, V. Kesireddy, C. N. Koval, A. Dannahower, W. Zhao, J. J. Yoo, and G. J. Christ. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng. Part A 17:2291–2303, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Maidhof, R., A. Marsano, E. J. Lee, and G. Vunjak-Novakovic. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol. Prog. 26:565–572, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Maidhof, R., N. Tandon, E. J. Lee, J. Luo, Y. Duan, K. Yeager, E. Konofagou, and G. Vunjak-Novakovic. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J. Tissue Eng. Regen. Med. 6:e12–e23, 2012.

    PubMed Central  PubMed  Google Scholar 

  85. Maillet, M., J. H. van Berlo, and J. D. Molkentin. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat. Rev. Mol. Cell Biol. 14:38–48, 2013.

    CAS  PubMed  Google Scholar 

  86. Martin, I., D. Wendt, and M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22:80–86, 2004.

    CAS  PubMed  Google Scholar 

  87. Martineau, L. C., and P. F. Gardiner. Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J. Appl. Physiol. 91:693–702, 2001.

    CAS  PubMed  Google Scholar 

  88. Molkentin, J. D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 63:467–475, 2004.

    CAS  PubMed  Google Scholar 

  89. Molkentin, J. D., and G. W. Dorn, 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63:391–426, 2001.

    CAS  PubMed  Google Scholar 

  90. Molnar, G., N. A. Schroedl, S. R. Gonda, and C. R. Hartzell. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 33:386–391, 1997.

    CAS  PubMed  Google Scholar 

  91. Moon, D. G., G. Christ, J. D. Stitzel, A. Atala, and J. J. Yoo. Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng. 14(5):848, 2008.

    Google Scholar 

  92. Musi, N., H. Yu, and L. J. Goodyear. AMP-activated protein kinase regulation and action in skeletal muscle during exercise. Biochem. Soc. Trans. 31:191–195, 2003.

    CAS  PubMed  Google Scholar 

  93. Naumann, K., and D. Pette. Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 55:203–211, 1994.

    CAS  PubMed  Google Scholar 

  94. Neumann, T., S. D. Hauschka, and J. E. Sanders. Tissue engineering of skeletal muscle using polymer fiber arrays. Tissue Eng. 9:995–1003, 2003.

    CAS  PubMed  Google Scholar 

  95. Nunes, S. S., J. W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M. A. Laflamme, K. Nanthakumar, G. J. Gross, P. H. Backx, G. Keller, and M. Radisic. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10:781–787, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Okano, T., S. Satoh, T. Oka, and T. Matsuda. Tissue engineering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43:M749–M753, 1997.

    CAS  PubMed  Google Scholar 

  97. Otis, J. S., T. J. Burkholder, and G. K. Pavlath. Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp. Cell Res. 310:417–425, 2005.

    CAS  PubMed  Google Scholar 

  98. Papadaki, M., N. Bursac, R. Langer, J. Merok, G. Vunjak-Novakovic, and L. E. Freed. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280:H168–H178, 2001.

    CAS  PubMed  Google Scholar 

  99. Perrone, C. E., D. Fenwick-Smith, and H. H. Vandenburgh. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J. Biol. Chem. 270:2099–2106, 1995.

    CAS  PubMed  Google Scholar 

  100. Pette, D. Historical perspectives: plasticity of mammalian skeletal muscle. J. Appl. Physiol. 90:1119–1124, 2001.

    CAS  PubMed  Google Scholar 

  101. Portner, R., S. Nagel-Heyer, C. Goepfert, P. Adamietz, and N. M. Meenen. Bioreactor design for tissue engineering. J. Biosci. Bioeng. 100:235–245, 2005.

    PubMed  Google Scholar 

  102. Powell, C. A., B. L. Smiley, J. Mills, and H. H. Vandenburgh. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 283:C1557–C1565, 2002.

    CAS  PubMed  Google Scholar 

  103. Radisic, M., M. Euloth, L. Yang, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol. Bioeng. 82:403–414, 2003.

    CAS  PubMed  Google Scholar 

  104. Radisic, M., A. Marsano, R. Maidhof, Y. Wang, and G. Vunjak-Novakovic. Cardiac tissue engineering using perfusion bioreactor systems. Nat. Protoc. 3:719–738, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Radisic, M., H. Park, F. Chen, J. E. Salazar-Lazzaro, Y. Wang, R. Dennis, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng. 12:2077–2091, 2006.

    CAS  PubMed  Google Scholar 

  106. Radisic, M., H. Park, H. Shing, T. Consi, F. J. Schoen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. U.S.A. 101:18129–18134, 2004.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ryder, J. W., R. Fahlman, H. Wallberg-Henriksson, D. R. Alessi, A. Krook, and J. R. Zierath. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement Of the mitogen- and stress-activated protein kinase 1. J. Biol. Chem. 275:1457–1462, 2000.

    CAS  PubMed  Google Scholar 

  108. Sadoshima, J., and S. Izumo. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59:551–571, 1997.

    CAS  PubMed  Google Scholar 

  109. Sakaguchi, K., T. Shimizu, S. Horaguchi, H. Sekine, M. Yamato, M. Umezu, and T. Okano. In vitro engineering of vascularized tissue surrogates. Sci. Rep. 3:1316, 2013.

    PubMed Central  PubMed  Google Scholar 

  110. Sathaye, A., N. Bursac, S. Sheehy, and L. Tung. Electrical pacing counteracts intrinsic shortening of action potential duration of neonatal rat ventricular cells in culture. J. Mol. Cell. Cardiol. 41:633–641, 2006.

    CAS  PubMed  Google Scholar 

  111. Sauer, H., G. Rahimi, J. Hescheler, and M. Wartenberg. Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J. Cell. Biochem. 75:710–723, 1999.

    CAS  PubMed  Google Scholar 

  112. Sekine, H., T. Shimizu, K. Sakaguchi, I. Dobashi, M. Wada, M. Yamato, E. Kobayashi, M. Umezu, and T. Okano. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat. Commun. 4:1399, 2013.

    PubMed Central  PubMed  Google Scholar 

  113. Serena, E., M. Flaibani, S. Carnio, L. Boldrin, L. Vitiello, P. De Coppi, and N. Elvassore. Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurol. Res. 30:207–214, 2008.

    CAS  PubMed  Google Scholar 

  114. Shansky, J., B. Creswick, P. Lee, X. Wang, and H. Vandenburgh. Paracrine release of insulin-like growth factor 1 from a bioengineered tissue stimulates skeletal muscle growth in vitro. Tissue Eng. 12:1833–1841, 2006.

    CAS  PubMed  Google Scholar 

  115. Shapira-Schweitzer, K., and D. Seliktar. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomater. 3:33–41, 2007.

    CAS  PubMed  Google Scholar 

  116. Slentz, D. H., G. A. Truskey, and W. E. Kraus. Effects of chronic exposure to simulated microgravity on skeletal muscle cell proliferation and differentiation. In Vitro Cell. Dev. Biol. Anim. 37:148–156, 2001.

    CAS  PubMed  Google Scholar 

  117. Sung, J. H., M. B. Esch, J. M. Prot, C. J. Long, A. Smith, J. J. Hickman, and M. L. Shuler. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13:1201–1212, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Taber, L. A. Biomechanical growth laws for muscle tissue. J. Theor. Biol. 193:201–213, 1998.

    CAS  PubMed  Google Scholar 

  119. Takahashi, H., T. Shimizu, M. Nakayama, M. Yamato, and T. Okano. The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue. Biomaterials 34:7372–7380, 2013.

    CAS  PubMed  Google Scholar 

  120. Tidball, J. G. Mechanical signal transduction in skeletal muscle growth and adaptation. J. Appl. Physiol. 98:1900–1908, 2005.

    CAS  PubMed  Google Scholar 

  121. Truskey, G., H. Achneck, N. Bursac, H. F. Chan, C. Cheng, C. Fernandez, S. Hong, Y. Jung, T. Koves, W. Kraus, K. Leong, L. Madden, W. Reichert, and X. Zhao. Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing. Stem Cell Res. Ther. (in press, 2013).

  122. Tsang, V. L., and S. N. Bhatia. Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56:1635–1647, 2004.

    PubMed  Google Scholar 

  123. Tulloch, N. L., V. Muskheli, M. V. Razumova, F. S. Korte, M. Regnier, K. D. Hauch, L. Pabon, H. Reinecke, and C. E. Murry. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109:47–59, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. van Berlo, J. H., M. Maillet, and J. D. Molkentin. Signaling effectors underlying pathologic growth and remodeling of the heart. J. Clin. Invest 123:37–45, 2013.

    PubMed Central  PubMed  Google Scholar 

  125. Vandenburgh, H. A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro Cell. Dev. Biol. 24:609–619, 1988.

    CAS  PubMed  Google Scholar 

  126. Vandenburgh, H. H., S. Hatfaludy, P. Karlisch, and J. Shansky. Mechanically induced alterations in cultured skeletal muscle growth. J. Biomech. 24(Suppl 1):91–99, 1991.

    PubMed  Google Scholar 

  127. Vandenburgh, H. H., P. Karlisch, and L. Farr. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell. Dev. Biol. 24:166–174, 1988.

    CAS  PubMed  Google Scholar 

  128. Vandenburgh, H., J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, and G. Crawford. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37:438–447, 2008.

    CAS  PubMed  Google Scholar 

  129. Vandenburgh, H. H., J. Shansky, P. Karlisch, and R. L. Solerssi. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation. J. Cell. Physiol. 155:63–71, 1993.

    CAS  PubMed  Google Scholar 

  130. Wilson, S. J., and A. J. Harris. Formation of myotubes in aneural rat muscles. Dev. Biol. 156:509–518, 1993.

    CAS  PubMed  Google Scholar 

  131. Wretman, C., A. Lionikas, U. Widegren, J. Lannergren, H. Westerblad, and J. Henriksson. Effects of concentric and eccentric contractions on phosphorylation of MAPK(erk1/2) and MAPK(p38) in isolated rat skeletal muscle. J. Physiol. 535:155–164, 2001.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Yeung, E. W., N. P. Whitehead, T. M. Suchyna, P. A. Gottlieb, F. Sachs, and D. G. Allen. Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J. Physiol. 562:367–380, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Zhang, D., I. Y. Shadrin, J. Lam, H. Q. Xian, H. R. Snodgrass, and N. Bursac. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34:5813–5820, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Zimmermann, W. H., K. Schneiderbanger, P. Schubert, M. Didie, F. Munzel, J. F. Heubach, S. Kostin, W. L. Neuhuber, and T. Eschenhagen. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90:223–230, 2002.

    CAS  PubMed  Google Scholar 

Download references

Acknoweldgments

This work was supported by NIH-NIAMS Grants AR055226 and AR065873, NIH-NHLBI Grant HL104326, and NIH Common Fund for the Microphysiological Systems Initiative Grant UH2TR000505 to N.B. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Bursac.

Additional information

Associate Editor Tzung Hsiai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangarajan, S., Madden, L. & Bursac, N. Use of Flow, Electrical, and Mechanical Stimulation to Promote Engineering of Striated Muscles. Ann Biomed Eng 42, 1391–1405 (2014). https://doi.org/10.1007/s10439-013-0966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0966-4

Keywords

Navigation