Skip to main content
Log in

A Population of Patient-Specific Adult Acquired Flatfoot Deformity Models Before and After Surgery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Following IRB approval, a cohort of 3-D rigid-body computational models was created from submillimeter MRIs of clinically diagnosed Adult Acquired Flatfoot Deformity patients and employed to investigate postoperative foot/ankle function and surgical effect during single-leg stance. Models were constrained through physiologic joint contact, passive soft-tissue tension, active muscle force, full body weight, and without idealized joints. Models were validated against patient-matched controls using clinically utilized radiographic angle and distance measures and plantar force distributions in the medial forefoot, lateral forefoot, and hindfoot. Each model further predicted changes in strain for the spring ligament, deltoid ligament, and plantar fascia, as well as joint contact loads for three midfoot joints, the talonavicular, navicular-1st cuneiform, and calcaneocuboid. Radiographic agreement ranged across measures, with average absolute deviations of <5° and <4 mm indicating generally good agreement. Postoperative plantar force loading in patients and models was reduced for the medial forefoot and hindfoot concomitant with increases in the lateral forefoot. Model predicted reductions in medial soft-tissue strain and increases in lateral joint contact load were consistent with in vitro observations and elucidate the biomechanical mechanisms of repair. Thus, validated rigid-body models offer promise for the investigation of foot/ankle kinematics and biomechanical behaviors that are difficult to measure in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arangio, G. A., and E. P. Salathé. Medial displacement calcaneal osteotomy reduces the excess forces in the medial longitudinal arch of the flat foot. Clin. Biomech. 16:535–539, 2001.

    Article  CAS  Google Scholar 

  2. Arangio, G. A., T. Wasser, and A. Rogman. Radiographic comparison of standing medial cuneiform arch height in adults with and without acquired flatfoot deformity. Foot Ankle Int. 27:636–638, 2006.

    PubMed  Google Scholar 

  3. Attarian, D. E., H. J. McCrackin, D. P. DeVito, J. H. McElhaney, and W. E. Garrett, Jr. Biomechanical characteristics of human ankle ligaments. Foot Ankle 6:54–58, 1985.

    Article  CAS  PubMed  Google Scholar 

  4. Blackman, A. J., J. J. Blevins, B. J. Sangeorzan, and W. R. Ledoux. Cadaveric flatfoot model: ligament attenuation and Achilles tendon overpull. J. Orthop. Res. 27:1547–1554, 2009.

    Article  PubMed  Google Scholar 

  5. Bland, J. M., and D. G. Altman. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 8:135–160, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Bruyn, J. M., M. W. Cerniglia, and D. M. Chaney. Combination of Evans calcaneal osteotomy and STA-Peg arthroreisis for correction of the severe pes valgo planus deformity. J. Foot Ankle Surg. 38:339–346, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. Bryant, A., P. Tinley, and K. Singer. A comparison of radiographic measurements in normal, hallux valgus, and hallux limitus feet. J. Foot Ankle Surg. 39:39–43, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Coughlin, M. J., and A. Kaz. Correlation of Harris mats, physical exam, pictures, and radiographic measurements in adult flatfoot deformity. Foot Ankle Int. 30:604–612, 2009.

    Article  PubMed  Google Scholar 

  9. Deland, J. T. The adult acquired flatfoot and spring ligament complex: pathology and implications for treatment. Foot Ankle Clin. North Am. 6:129–135, 2001.

    Article  CAS  Google Scholar 

  10. Deland, J. T., R. J. de Asla, I.-H. Sung, L. A. Ernberg, and H. G. Potter. Posterior tibial tendon insufficiency: which ligaments are involved? Foot Ankle Int. 26:427–435, 2005.

    PubMed  Google Scholar 

  11. Deland, J. T., A. E. Page, and S. M. Kenneally. Posterior calcaneal osteotomy with wedge: cadaver testing of a new procedure for insufficiency of the posterior tibial tendon. Foot Ankle Int. 20:290–295, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Ellis, S. J., J. C. Yu, A. H. Johnson, A. Elliott, M. O’Malley, and J. Deland. Plantar pressures in patients with and without lateral foot pain after lateral column lengthening. J. Bone Joint Surg. Am. 92:81–91, 2010.

    Article  PubMed  Google Scholar 

  13. Ellis, S. J., J. C. Yu, B. R. Williams, C. Lee, Y. Chiu, and J. T. Deland. New radiographic parameters assessing forefoot abduction in the adult acquired flatfoot deformity. Foot Ankle Int. 30:1168, 2009.

    Article  PubMed  Google Scholar 

  14. Hadfield, M. H., J. W. Snyder, P. C. Liacouras, J. R. Owen, J. S. Wayne, and R. S. Adelaar. Effects of medializing calcaneal osteotomy on Achilles tendon lengthening and plantar foot pressures. Foot Ankle Int. 24:523–529, 2003.

    PubMed  Google Scholar 

  15. Horton, G. A., M. S. Myerson, B. G. Parks, and Y. W. Park. Effect of calcaneal osteotomy and lateral column lengthening on the plantar fascia: a biomechanical investigation. Foot Ankle Int. 19:370–373, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Houck, J. R., C. Nomides, C. G. Neville, and A. S. Flemister. The effect of stage ii posterior tibial tendon dysfunction on deep compartment muscle strength: a new strength test. Foot Ankle Int. 29:895–902, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Iaquinto, J. M., and J. S. Wayne. Computational model of the lower leg and foot/ankle complex: application to arch stability. J. Biomech. Eng. 132:021009, 2010.

    Article  PubMed  Google Scholar 

  18. Iaquinto, J. M., and J. S. Wayne. Effects of surgical correction for the treatment of adult acquired flatfoot deformity: a computational investigation. J. Orthop. Res. 29:1047–1054, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Johnson, K. A., and D. E. Strom. Tibialis posterior tendon dysfunction. Clin. Orthop. Relat. Res. 239:196–206, 1989.

  20. Kitaoka, H. B., Z. P. Luo, and K. N. An. Three-dimensional analysis of flatfoot deformity: cadaver study. Foot Ankle Int. 19:447, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Liacouras, P. C., and J. S. Wayne. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129:811, 2007.

    Article  PubMed  Google Scholar 

  22. Mann, R. A. Acquired flatfoot in adults. Clin. Orthop. Relat. Res. 181, 46–51, 1983.

  23. Mann, R. A., and F. M. Thompson. Rupture of the posterior tibial tendon causing flat foot. Surgical treatment. J. Bone Joint Surg. Am. 67:556–561, 1985.

    CAS  PubMed  Google Scholar 

  24. Matheis, E. A., E. M. Spratley, C. W. Hayes, R. S. Adelaar, and J. S. Wayne. Plantar measurements to determine success of surgical correction of stage IIb adult acquired flatfoot deformity. J. Foot Ankle Surg. 2014. doi:10.1053/j.jfas.2014.03.020.

  25. Milner, C. E., and R. W. Soames. The medial collateral ligaments of the human ankle joint: anatomical variations. Foot Ankle Int. 19:289–292, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Murley, G. S., H. B. Menz, and K. B. Landorf. A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. J. Foot Ankle Res. 2:22, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Murray, M. P., G. N. Guten, J. M. Baldwin, and G. M. Gardner. A comparison of plantar flexion torque with and without the triceps surae. Acta Orthop. Scand. 47:122–124, 1976.

    Article  CAS  PubMed  Google Scholar 

  28. Myerson, M. S., A. Badekas, and L. C. Schon. Treatment of stage II posterior tibial tendon deficiency with flexor digitorum longus tendon transfer and calcaneal osteotomy. Foot Ankle Int. 25:445–450, 2004.

    PubMed  Google Scholar 

  29. Myerson, M. S., and J. Corrigan. Treatment of posterior tibial tendon dysfunction with flexor digitorum longus tendon transfer and calcaneal osteotomy. Orthopedics 19:383–388, 1996.

    CAS  PubMed  Google Scholar 

  30. Myerson, M. S., J. Corrigan, F. Thompson, and L. C. Schon. Tendon transfer combined with calcaneal osteotomy for treatment of posterior tibial tendon insufficiency: a radiological investigation. Foot Ankle Int. 16:712–718, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Nyska, M., B. G. Parks, I. T. Chu, and M. S. Myerson. The contribution of the medial calcaneal osteotomy to the correction of flatfoot deformities. Foot Ankle Int. 22:278–282, 2001.

    CAS  PubMed  Google Scholar 

  32. Otis, J. C., J. T. Deland, S. Kenneally, and V. Chang. Medial arch strain after medial displacement calcaneal osteotomy: an in vitro study. Foot Ankle Int. 20:222–226, 1999.

    Article  CAS  PubMed  Google Scholar 

  33. Parsons, S., S. Naim, P. J. Richards, and D. McBride. Correction and prevention of deformity in type II tibialis posterior dysfunction. Clin. Orthop. Relat. Res. 468:1025–1032, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Pomeroy, G. C., and A. Manoli III. A new operative approach for flatfoot secondary to posterior tibial tendon insufficiency: a preliminary report. Foot Ankle Int. 18:206–212, 1997.

  35. Resnick, R. B., M. H. Jahss, J. Choueka, F. Kummer, J. C. Hersch, and E. Okereke. Deltoid ligament forces after tibialis posterior tendon rupture: effects of triple arthrodesis and calcaneal displacement osteotomies. Foot Ankle Int. 16:14–20, 1995.

    Article  CAS  PubMed  Google Scholar 

  36. Salathe, E. P., and G. A. Arangio. A biomechanical model of the foot: the role of muscles, tendons, and ligaments. J. Biomech. Eng. 124:281–287, 2002.

    Article  PubMed  Google Scholar 

  37. Saltzman, C. L., and G. Y. El-Khoury. The hindfoot alignment view. Foot Ankle Int. 16:572–576, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. Saltzman, C. L., D. A. Nawoczenski, and K. D. Talbot. Measurement of the medial longitudinal arch. Arch. Phys. Med. Rehabil. 76:45–49, 1995.

    Article  CAS  PubMed  Google Scholar 

  39. Sammarco, G. J., and R. T. Hockenbury. Treatment of stage II posterior tibial tendon dysfunction with flexor hallucis longus transfer and medial displacement calcaneal osteotomy. Foot Ankle Int. 22:305–312, 2001.

    CAS  PubMed  Google Scholar 

  40. Sangeorzan, B. J., V. Mosca, and S. T. Hansen, Jr. Effect of calcaneal lengthening on relationships among the hindfoot, midfoot, and forefoot. Foot Ankle 14:136–141, 1993.

    Article  CAS  PubMed  Google Scholar 

  41. Sarrafian, S. K. Anatomy of the Foot and Ankle: Descriptive, Topographic, Functional. Philadelphia, PA: Lippincott, p. 648, 1993.

    Google Scholar 

  42. Scott, A. T., T. M. Hendry, J. M. Iaquinto, J. R. Owen, J. S. Wayne, and R. S. Adelaar. Plantar pressure analysis in cadaver feet after bony procedures commonly used in the treatment of stage II posterior tibial tendon insufficiency. Foot Ankle Int. 28:1143–1153, 2007.

    Article  PubMed  Google Scholar 

  43. Scott, G., H. B. Menz, and L. Newcombe. Age-related differences in foot structure and function. Gait Posture 26:68–75, 2007.

    Article  PubMed  Google Scholar 

  44. Siegler, S., J. Block, and C. D. Schneck. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 8:234–242, 1988.

    Article  CAS  PubMed  Google Scholar 

  45. Spratley, E. M., J. M. Arnold, J. R. Owen, C. D. Glezos, R. S. Adelaar, and J. S. Wayne. Plantar forces in flexor hallucis longus versus flexor digitorum longus transfer in adult acquired flatfoot deformity. Foot Ankle Int. 2013. doi:10.1177/1071100713487724.

    PubMed  Google Scholar 

  46. Spratley, E. M., E. A. Matheis, C. W. Hayes, R. S. Adelaar, and J. S. Wayne. Validation of a population of patient-specific adult acquired flatfoot deformity models. J. Orthop. Res. 2013. doi:10.1002/jor.22471.

    PubMed  Google Scholar 

  47. Spratley, E. M., and J. S. Wayne. Computational model of the human elbow and forearm: application to complex varus instability. Ann. Biomed. Eng. 39:1084–1091, 2010.

    Article  PubMed  Google Scholar 

  48. Thomas, J., M. Kunkel, R. Lopez, and D. Sparks. Radiographic values of the adult foot in a standardized population. J. Foot Ankle Surg. 45:3–12, 2006.

    Article  PubMed  Google Scholar 

  49. Thordarson, D. B., P. Merkle, T. Hedman, and W.-L. Liao. An evaluation of the inversion torque of the posterior tibialis versus flexor digitorum longus and flexor hallucis longus posterior tibialis tendon reconstructions. Foot 6:134–137, 1996.

    Article  Google Scholar 

  50. Trnka, H. J., M. E. Easley, and M. S. Myerson. The role of calcaneal osteotomies for correction of adult flatfoot. Clin. Orthop. Relat. Res. 365:50–64, 1999.

  51. van der Krans, A., J. W. K. Louwerens, and P. Anderson. Adult acquired flexible flatfoot, treated by calcaneo-cuboid distraction arthrodesis, posterior tibial tendon augmentation, and percutaneous Achilles tendon lengthening: a prospective outcome study of 20 patients. Acta Orthop. 77:156–163, 2006.

  52. Ward, K. A., and R. W. Soames. Morphology of the plantar calcaneocuboid ligaments. Foot Ankle Int. 18:649–653, 1997.

    Article  CAS  PubMed  Google Scholar 

  53. Wei, F., S. C. Hunley, J. W. Powell, and R. C. Haut. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation. Ann. Biomed. Eng. 39:756–765, 2010.

    Article  PubMed  Google Scholar 

  54. Younger, A. S., B. Sawatzky, and P. Dryden. Radiographic assessment of adult flatfoot. Foot Ankle Int. 26:820–825, 2005.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors received no external financial support for the research, authorship, and/or production of this work. The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Wayne.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 - Measurements for ML view adapted from Spratley et al. 47The axis of the calcaneus is formed by a line passing through the midpoints of the widest points of the anterior and posterior aspects. The talar axis is formed by lines connecting the superior most point on the talar dome to the tip of the lateral process and across the anterior margins of the talar neck; the axis bisects these two lines. The first metatarsal axis is formed by bisecting lines across the width of the proximal and distal diaphysis. θ1: The calcaneal pitch angle (ML-CP) is measured between a line tracing the inferior border of the calcaneus and the horizontal. θ2: The intersection of the talar axis and the 1st metatarsal axis forms the ML talo-1st metatarsal angle (ML-T1MT). θ3: The intersection of the talar axis and the calcaneal axis forms the talocalcaneal angle (ML-TC). θ4: The talar declination angle (ML-Tdec) is measured between the talar axis and the horizontal. θ5: Finally, the calcaneal 1st metatarsal angle (ML-C1MT) is measured between the axis of the calcaneus and the 1st metatarsal axis. The heights of the δ1: talar (ML-Tal-h), δ2:navicular (ML-Nav-h), δ3:first cuneiform (ML-1CN-h), and δ4:cuboid (ML-Cub-h) were measured from the inferior most point perpendicular to a line connecting the inferior margin of the calcaneus and that of the medial sesamoid. δ5:The first cuneiform to the fifth metatarsal height (ML-1CN/5MT) was measured from the same inferior most point on the cuboid to the inferior most point on the base of the fifth metatarsal.

Supplemental Fig. 2 - Measurements for standard AP view adapted from Spratley et al. 47 θ6: The talonavicular angle (AP-TN) is measured between the talar and navicular AP axes as described by Sangeorzan. These axes are defined as the orthogonal projections of lines spanning the medial and lateral margins of the respective articular surfaces. The axes of the first and second metatarsals are formed in a similar fashion for the AP view as in the ML view wherein the axes bisect lines crossing the proximal and distal widths of the diaphyses. θ7: The talar first metatarsal (AP-T1MT) and θ8: talar second metatarsal angles (AP-T2MT) are formed between the talar axis and the axis of the first and second metatarsals, respectively. δ6: The talonavicular uncoverage distance was measured as the AP distance separating the medial margins of the talar and navicular articular surfaces.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spratley, E.M., Matheis, E.A., Hayes, C.W. et al. A Population of Patient-Specific Adult Acquired Flatfoot Deformity Models Before and After Surgery. Ann Biomed Eng 42, 1913–1922 (2014). https://doi.org/10.1007/s10439-014-1048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1048-y

Keywords

Navigation