Skip to main content

Advertisement

Log in

EEG Feature Pre-processing for Neonatal Epileptic Seizure Detection

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Aim of our project is to further optimize neonatal seizure detection using support vector machine (SVM). First, a Kalman filter (KF) was used to filter both feature and classifier output time series in order to increase temporal precision. Second, EEG baseline feature correction (FBC) was introduced to reduce inter patient variability in feature distributions. The performance of the detection methods is evaluated on 54 multi channel routine EEG recordings from 39 both term and pre-term newborns. The area under the receiver operating characteristics curve (AUC) as well as sensitivity and specificity are used to evaluate the performance of the classification method. SVM without KF and FBC achieves an AUC of 0.767 (sensitivity 0.679, specificity 0.707). The highest AUC of 0.902 (sensitivity 0.801, specificity 0.831) is achieved on baseline corrected features with a Kalman smoother used for training data pre-processing and a KF used to filter the classifier output. Both FBC and KF significantly improve neonatal epileptic seizure detection. This paper introduces significant improvements for the state of the art SVM based neonatal epileptic seizure detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aarabi, A., F. Wallois, and R. Grebe. Automated neonatal seizure detection: a multistage classification system through feature selection based on relevance and redundancy analysis. Clin. Neurophysiol. 117:328–340, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Aarabi, A., R. Grebe, and F. Wallois. A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin. Neurophysiol. 118:2781–2797, 2007.

    Article  PubMed  Google Scholar 

  3. Bar-Shalom, Y., T. Kirubarajan, and X.-R. Li. Estimation with Applications to Tracking and Navigation. New York: Wiley, 2002.

    Google Scholar 

  4. Chisci, L., A. Mavino, G. Perferi, M. Sciandrone, C. Anile, G. Colicchio, and F. Fuggetta. Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans. Biomed. Eng. 57:1124–1132, 2010.

    Article  PubMed  Google Scholar 

  5. De Weerd, A. W., P. A. Despland, P. Plouin, and Neonatal EEG. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. 52:149–157, 1999.

    Google Scholar 

  6. Deburchgraeve, W., P. J. Cherian, M. De Vos, R. M. Swarte, J. H. Blok, G. H. Visser, P. Govaert, and S. Van Huffel. Automated neonatal seizure detection mimicking a human observer reading EEG. Clin. Neurophysiol. 119:2447–2454, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Gotman, J., D. Flanagan, J. Zhang, and B. Rosenblatt. Automatic seizure detection in the newborn: methods and initial evaluation. Electroencephalogr. Clin. Neurophysiol. 103:356–362, 1997.

    Article  PubMed  CAS  Google Scholar 

  8. Greene, B. R., S. Faul, W. P. Marnane, G. Lightbody, I. Korotchikova, and G. B. Boylan. A comparison of quantitative EEG features for neonatal seizure detection. Clin. Neurophysiol. 119:1248–1261, 2008.

    Article  PubMed  CAS  Google Scholar 

  9. Hanley, J. A., and B. J. McNeil. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. MATLAB version 7.14.0. Natick. Massachusetts: The MathWorks Inc., 2012.

  11. Navakatikyan, M. A., P. B. Colditz, C. J. Burke, T. E. Inder, J. Richmond, and C. E. Williams. Seizure detection algorithm for neonates based on wave-sequence analysis. Clin. Neurophysiol. 117:1190–1203, 2006.

    Article  PubMed  Google Scholar 

  12. Pachori, R. B., and V. Bajaj. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Programs Biomed. 104:373–381, 2011.

    Article  PubMed  Google Scholar 

  13. Rauch, H. E., F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems. AIAA J. 3:1445–1450, 1965.

    Article  Google Scholar 

  14. Scher, M. S., M. Y. Hamid, D. A. Steppe, M. E. Beggarly, and M. J. Painter. Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 34:284–288, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Scher, M. S., D. A. Steppe, R. J. Sclabassi, and D. L. Banks. Regional differences in spectral EEG measures between healthy term and preterm infants. Pediatr. Neurol. 17:218–223, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Scholkopf, B. S. A. Learning with Kernels. Cambridge: MIT press, 2002.

    Google Scholar 

  17. Temko, A., C. Nadeu, W. Marnane, G. B. Boylan, and G. Lightbody. EEG signal description with spectral-envelope-based speech recognition features for detection of neonatal seizures. IEEE Trans. Inf. Technol. Biomed. 15:839–847, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Temko, A., E. Thomas, W. Marnane, G. Lightbody, and G. Boylan. EEG-based neonatal seizure detection with support vector machines. Clin. Neurophysiol. 122:464–473, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Temko, A., E. Thomas, W. Marnane, G. Lightbody, and G. B. Boylan. Performance assessment for EEG-based neonatal seizure detectors. Clin. Neurophysiol. 122:474–482, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Tharp, B. R. Electrophysiological brain maturation in premature infants: an historical perspective. J. Clin. Neurophysiol. 7:302–314, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Vapnik, V. Estimation of dependences based on empirical data: Springer series in statistics (Springer Series in Statistics). New Yok: Springer, 1982.

    Google Scholar 

  22. Wirrell, E. C., E. A. Armstrong, L. D. Osman, and J. Y. Yager. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr. Res. 50:445–454, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Bogaarts.

Additional information

Associate Editor Leonidas D Iasemidis oversaw the review of this article.

Appendix

Appendix

Kalman Filter

It is assumed that epilepsy is observed through the continuous and noisy features z k calculated from the EEG. By modelling the behaviour of z k by means of a state space model the KF can be applied to obtain a filtered version \(\hat{f}_{\text{k}}\) of the noiseless feature value f k. The behaviour of z k can be modelled as the result of a noisy measurement process:

\(z_{\text{k}} = f_{\text{k}} + v_{\text{k}}\) with v k the zero-mean measurement noise with standard deviation σ v. Furthermore it is assumed that f k undergoes smooth transitions between seizure and NS states. This behaviour can be enforced by a white noise acceleration model (WNA) with a nearly-constant rate of change.3 We now introduce the state vector \(s_{\text{k}} = \left[ {f_{\text{k}} ,\dot{f}_{\text{k}} } \right]\) with \(\dot{f}_{\text{k}}\) the rate of change of f k. The signal z k can now be described by the following state-space model:

$$\begin{array}{*{20}c} {s_{{{\text{k}} + 1}} = \left[ {\begin{array}{*{20}c} 1 & T \\ 0 & 1 \\ \end{array} } \right]s_{\text{k}} + w_{\text{k}} } \\ {z_{\text{k}} = \left[ {\begin{array}{*{20}c} 1 & 0 \\ \end{array} } \right]s_{\text{k}} + v_{\text{k}} } \\ \end{array} ,$$
(1)

T represents the sample interval and w k the zero-mean process disturbance with covariance

$$Q = \left[ {\begin{array}{*{20}c} {\sigma_{\text{w}}^{2} \frac{{T^{3} }}{3}} & {\sigma_{\text{w}}^{2} \frac{{T^{2} }}{2}} \\ {\sigma_{\text{w}}^{2} \frac{{T^{2} }}{2}} & {\sigma_{\text{w}}^{2} T} \\ \end{array} } \right],$$
(2)

\(\sigma_{\text{w }}\) is the assumed standard deviation of the random fluctuations of \(\dot{f}_{\text{k}}\). The KF can now be applied to Eq. (1) in order to recursively calculate a filtered estimate \(\hat{f}_{\text{k}}\) of f k. Instead of the calculated feature z k the filtered estimate of the noiseless feature \(\hat{f}_{\text{k}}\) will be used in the training and classification procedure. The gain of the KF only depends on the ratio \(\sigma_{\text{KF}} \triangleq \sigma_{{{\text{w}} }} /\sigma_{{{\text{v}} }}\), \(\sigma_{\text{v}}\) is set to 1 and \(\sigma_{\text{w }}\) is varied from 10−6 to 10−2 (in 9 equally log-spaced steps) in order to tune the filter’s performance. Different optimal filter gains (\(\sigma_{\text{w }}\)) were found for the KF-test (1 × 10−3) and the KS-train (1 × 10−3) in the train phase.

The amount of filtering that is applied by the KF depends on the gain \(\sigma_{\text{w }}\) which is the only parameter that has to be set by the user. The value of \(\sigma_{\text{w }}\)will be varied to tune filter performance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogaarts, J.G., Gommer, E.D., Hilkman, D.M.W. et al. EEG Feature Pre-processing for Neonatal Epileptic Seizure Detection. Ann Biomed Eng 42, 2360–2368 (2014). https://doi.org/10.1007/s10439-014-1089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1089-2

Keywords

Navigation