Skip to main content
Log in

Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy E a and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating E a, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher E a and A parameters were found at low end-temperature (50 °C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45–50 °C) vs. membrane dye assays (60–70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. Alternatively, the correlated parameter approach (Eq. 6) can also be re-written as \( k = \exp ( - C)\exp \left[ {\frac{{E_{\text{a}} }}{R}\left( {\frac{1}{316} - \frac{1}{T}} \right)} \right] \), where 316 K (or 43 °C) can be considered as the reference temperature derived from past measurements (Fig. 1).

References

  1. Alberts, B. Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. New York: Taylor & Francis, 1998.

    Google Scholar 

  2. Aravalli, R. N., J. Choi, S. Mori, D. Mehra, J. C. Bischof, and E. N. Cressman. Spectroscopic and calorimetric evaluation of chemically induced protein denaturation in HuH-7 liver cancer cells and impact on cell survival. Technol. Cancer Res. Treat. 11:467–473, 2012.

    CAS  PubMed  Google Scholar 

  3. Balasubramanian, S. K., W. F. Wolkers, and J. C. Bischof. Thermal “Fingerprinting” of Cells Using FTIR, ASME 2007 Summer Bioengineering Conference, American Society of Mechanical Engineers, 2007; pp. 87–88.

  4. Banks, B., V. Damjanovic, and C. Vernon. The so-called thermodynamic compensation law and thermal death. Nature 240:147–148, 1972.

    Article  CAS  Google Scholar 

  5. Barrie, P. J. The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors. Phys. Chem. Chem. Phys. 14:327–336, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Barrie, P. J. The mathematical origins of the kinetic compensation effect: 1. The effect of random experimental errors. Phys. Chem. Chem. Phys. 14:318–326, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Bhowmick, S., D. J. Swanlund, and J. C. Bischof. Supraphysiological thermal injury in dunning AT-1 prostate tumor cells. J. Biomech. Eng. 122:51–59, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Carpentier, A., J. Itzcovitz, D. Payen, B. George, R. J. McNichols, A. Gowda, R. J. Stafford, J.-P. Guichard, D. Reizine, and S. Delaloge. Real time magnetic resonance guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63:ONS21–ONS29, 2008.

    Article  PubMed  Google Scholar 

  9. Daggett, V. Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res. 35:422–429, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. Daggett, V. Protein folding-simulation. Chem. Rev. 106:1898–1916, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Dewey, W. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperthermia 10:457–483, 1994.

    Article  CAS  PubMed  Google Scholar 

  12. Eissing, T., H. Conzelmann, E. D. Gilles, F. Allgower, E. Bullinger, and P. Scheurich. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 279:36892–36897, 2004.

    Article  CAS  PubMed  Google Scholar 

  13. Elliott, A. M., R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle. Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med. Phys. 34:3102–3108, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3:107, 1935.

    Article  CAS  Google Scholar 

  15. Feng, Y., D. Fuentes, A. Hawkins, J. Bass, M. N. Rylander, A. Elliott, A. Shetty, R. J. Stafford, and J. T. Oden. Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng. Comput. 25:3–13, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Frensdorff, H., M. Watson, and W. Kauzmann. The kinetics of protein denaturation. IV. The viscosity and gelation of urea solutions of ovalbumin. J. Am. Chem. Soc. 75:5157–5166, 1953.

    Article  CAS  Google Scholar 

  17. He, X., S. Bhowmick, and J. C. Bischof. Thermal therapy in urologic systems: a comparison Of Arrhenius and thermal isoeffective dose models in predicting hyperthermic injury. J. Biomech. Eng. 131:074507, 2009.

    Article  PubMed  Google Scholar 

  18. He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31:355–421, 2003.

    Article  PubMed  Google Scholar 

  19. He, X., W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof. In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury. Ann. Biomed. Eng. 32:1384–1398, 2004.

    Article  PubMed  Google Scholar 

  20. Huntington, J. A., and P. E. Stein. Structure and properties of ovalbumin. J. Chromatogr. B 756:189–198, 2001.

    Article  CAS  Google Scholar 

  21. Krug, R. R., W. G. Hunter, and R. A. Grieger. Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 80:2341–2351, 1976.

    Article  CAS  Google Scholar 

  22. Lepock, J. R., H. E. Frey, and K. P. Ritchie. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J. Cell Biol. 122:1267–1276, 1993.

    Article  CAS  PubMed  Google Scholar 

  23. Lepock, J. R., K. P. Ritchie, M. C. Kolios, A. M. Rodahl, K. A. Heinz, and J. Kruuv. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry 31:12706–12712, 1992.

    Article  CAS  PubMed  Google Scholar 

  24. Lumry, R., and H. Eyring. Conformation changes of proteins. J. Phys. Chem. 58:110–120, 1954.

    Article  CAS  Google Scholar 

  25. Lung, D. C., T. F. Stahovich, and Y. Rabin. Computerized planning for multiprobe cryosurgery using a force-field analogy. Comput. Methods Biomech. Biomed. Eng. 7:101–110, 2004.

    Article  Google Scholar 

  26. Maron, S. H., J. B. Lando, and C. F. Prutton. Fundamentals of physical chemistry. New York: Macmillan, 1974.

    Google Scholar 

  27. Mayor, U., N. R. Guydosh, C. M. Johnson, J. G. N. Grossmann, S. Sato, G. S. Jas, S. M. Freund, D. O. Alonso, V. Daggett, and A. R. Fersht. The Complete Folding Pathway of a Protein From Nanoseconds to Microseconds. Nature 421:863–867, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Miles, C. A. Kinetics of the helix/coil transition of the collagen-like peptide (Pro-Hyp-Gly)10. Biopolymers 87:51–67, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. Miles, C. A., and A. J. Bailey. Studies of the collagen-like Peptide (Pro-Pro-Gly)10 confirm that the shape and position of the type I collagen denaturation endotherm is governed by the rate of helix unfolding. J. Mol. Biol. 337:917–931, 2004.

    Article  CAS  PubMed  Google Scholar 

  30. Miles, C. A., T. V. Burjanadze, and A. J. Bailey. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J. Mol. Biol. 245:437–446, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Pearce, J. A. Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose, SPIE BiOS: Biomedical Optics, 2009; pp. 718104–718104-15.

  32. Pearce, J. A. Comparative analysis of mathematical models of cell death and thermal damage processes. Int. J. Hyperthermia 29:262–280, 2013.

    Article  PubMed  Google Scholar 

  33. Qin, Z., and J. C. Bischof. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41:1191–1217, 2012.

    Article  CAS  PubMed  Google Scholar 

  34. Relkin, P., and D. Mulvihill. Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Crit. Rev. Food Sci. Nutr. 36:565–601, 1996.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg, B., G. Kemeny, R. C. Switzer, and T. C. Hamilton. Quantitative evidence for protein denaturation as the cause of thermal death. Nature 232:471–473, 1971.

    Article  CAS  PubMed  Google Scholar 

  36. Salloum, M., R. Ma, and L. Zhu. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. Int. J. Hyperther. 25:309–321, 2009.

    Article  CAS  Google Scholar 

  37. Sanchez-Ruiz, J. M. Theoretical analysis of Lumry–Eyring models in differential scanning calorimetry. Biophys. J. 61:921–935, 1992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sapareto, S. A., L. E. Hopwood, W. C. Dewey, M. R. Raju, and J. W. Gray. Effects of hyperthermia on survival and progression of Chinese Hamster Ovary Cells. Cancer Res. 38:393–400, 1978.

    CAS  PubMed  Google Scholar 

  39. Schwaab, M., and J. C. Pinto. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1. Problems involving one kinetic constant. Chem. Eng. Sci. 62:2750–2764, 2007.

    Article  CAS  Google Scholar 

  40. Shanmugam, G., and P. L. Polavarapu. Vibrational circular dichroism spectra of protein films: thermal denaturation of bovine serum albumin. Biophys. Chem. 111:73–77, 2004.

    Article  CAS  PubMed  Google Scholar 

  41. Tanford, C. Protein denaturation. Adv. Protein Chem. 23:121–282, 1968.

    Article  CAS  PubMed  Google Scholar 

  42. Thomsen, S. L., and J. A. Pearce. Thermal damage and rate processes in tissues. In: Optical-Thermal Response of Laser-Irradiated Tissue, edited by A. Welch, and M. J. C. Van Gemert. Dordrecht, The Netherlands: Springer, 2011, pp. 487–549.

    Google Scholar 

  43. Thomsen, S., J. A. Pearce, and W.-F. Cheong. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans. Biomed. Eng. 36:1174–1179, 1989.

    Article  CAS  PubMed  Google Scholar 

  44. Vajpai, N., L. Nisius, M. Wiktor, and S. Grzesiek. High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc. Natl. Acad. Sci. USA 110:E368–E376, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wang, Y., K. Murayama, Y. Myojo, R. Tsenkova, N. Hayashi, and Y. Ozaki. Two-dimensional fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. J. Phys. Chem. B 102:6655–6662, 1998.

    Article  CAS  Google Scholar 

  46. Weijers, M., P. A. Barneveld, C. Stuart, A. Martien, and R. W. Visschers. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-Order kinetics. Protein Sci. 12:2693–2703, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wolkers, W. F., S. K. Balasubramanian, E. L. Ongstad, H. C. Zec, and J. C. Bischof. Effects of freezing on membranes and proteins in LNCaP prostate tumor cells. Biochim. Biophys. Acta 1768:728–736, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wright, N. T. On a relationship between the Arrhenius parameters from thermal damage studies. J. Biomech. Eng. 125:300–304, 2003.

    Article  PubMed  Google Scholar 

  49. Wright, N., and J. Humphrey. Denaturation of collagen via heating: an irreversible rate process. Annu. Rev. Biomed. Eng. 4:109–128, 2002.

    Article  CAS  PubMed  Google Scholar 

  50. Yan, C., V. Pattani, J. W. Tunnell, and P. Ren. Temperature-induced unfolding of epidermal growth factor (EGF): insight from molecular dynamics simulation. J. Mol. Graphics Modell. 29:2–12, 2010.

    Article  CAS  Google Scholar 

  51. Yelon, A., and B. Movaghar. Microscopic explanation of the compensation (Meyer–Neldel) rule. Phys. Rev. Lett. 65:618–620, 1990.

    Article  PubMed  Google Scholar 

  52. Yelon, A., B. Movaghar, and H. Branz. Origin and consequences of the compensation (Meyer–Neldel) law. Phys. Rev. B 46:12244, 1992.

    Article  Google Scholar 

  53. Yelon, A., B. Movaghar, and R. Crandall. Multi-excitation entropy: its role in thermodynamics and kinetics. Rep. Prog. Phys. 69:1145–1194, 2006.

    Article  CAS  Google Scholar 

  54. Zamyatnin, A. Amino acid, peptide, and protein volume in solution. Ann. Rev. Biphys. Bioeng. 13:145–165, 1984.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was financially supported by the National Institute of Health (NIH) R01-CA07528. W.F.W. performed work in Minnesota and Hannover for this project and was supported in part by funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy). Z.Q was supported by an Interdisciplinary Doctoral Fellowship and Doctoral Dissertation Fellowship. J.C.B. was supported by McKnight Professorship and Carl and Janet Kuhrmeyer Chair in Mechanical Engineering. J.A.P. received partial support for his investigations from the T.L.L. Temple and O-Donnell Foundations, and from Transonic/Scisense Inc. We thank Dr. Neil Wright for his insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Bischof.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Balasubramanian, S.K., Wolkers, W.F. et al. Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells. Ann Biomed Eng 42, 2392–2404 (2014). https://doi.org/10.1007/s10439-014-1100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1100-y

Keywords

Navigation