Skip to main content

Advertisement

Log in

The Powerful Functions of Peptide-Based Bioactive Matrices for Regenerative Medicine

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In an effort to develop bioactive matrices for regenerative medicine, peptides have been used widely to promote interactions with cells and elicit desired behaviors in vivo. This paper describes strategies that utilize peptide-based molecules as building blocks to create supramolecular nanostructures that emulate not only the architecture but also the chemistry of the extracellular matrix in mammalian biology. After initiating a desired regenerative response in vivo, the innate biodegradability of these systems allow for the natural biological processes to take over in order to promote formation of a new tissue without leaving a trace of the nonnatural components. These bioactive matrices can either bind or mimic growth factors or other protein ligands to elicit a cellular response, promote specific mechano-biological responses, and also guide the migration of cells with programmed directionality. In vivo applications discussed in this review using peptide-based matrices include the regeneration of axons after spinal cord injury, regeneration of bone, and the formation of blood vessels in ischemic muscle as a therapy in peripheral arterial disease and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8

Similar content being viewed by others

References

  1. Abouna, G. M. Organ shortage crisis: problems and possible solutions. Transplant. Proc. 40:34–38, 2008.

    Article  CAS  PubMed  Google Scholar 

  2. Angeloni, N. L., C. W. Bond, Y. Tang, D. A. Harrington, S. Zhang, S. I. Stupp, K. E. McKenna, and C. A. Podlasek. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32:1091–1101, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Banwell, E. F., E. S. Abelardo, D. J. Adams, M. A. Birchall, A. Corrigan, A. M. Donald, M. Kirkland, L. C. Serpell, M. F. Butler, and D. N. Woolfson. Rational design and application of responsive alpha-helical peptide hydrogels. Nat. Mater. 8:596–600, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Berndt, P., G. B. Fields, and M. Tirrell. Synthetic lipidation of peptides and amino-acids—monolayer structure and properties. J. Am. Chem. Soc. 117:9515–9522, 1995.

    Article  CAS  Google Scholar 

  5. Berns, E. J., S. Sur, L. Pan, J. E. Goldberger, S. Suresh, S. Zhang, J. A. Kessler, and S. I. Stupp. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 35:185–195, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. Boekhoven, J., and S. I. Stupp. 25th anniversary article: supramolecular materials for regenerative medicine. Adv. Mater. 26:1642–1659, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Capila, I., and R. J. Linhardt. Heparin–protein interactions. Angew. Chem. Int. Ed. 41:391–412, 2002.

    Article  Google Scholar 

  8. Cheng, T. Y., M. H. Chen, W. H. Chang, M. Y. Huang, and T. W. Wang. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34:2005–2016, 2013.

    Article  CAS  PubMed  Google Scholar 

  9. D’Andrea, L. D., G. Iaccarino, R. Fattorusso, D. Sorriento, C. Carannante, D. Capasso, B. Trimarco, and C. Pedone. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc. Natl. Acad. Sci. USA 102:14215–14220, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  10. D’Andrea, L. D., A. Del Gatto, L. De Rosa, A. Romanelli, and C. Pedone. Peptides targeting angiogenesis related growth factor receptors. Curr. Pharm. Des. 15:2414–2429, 2009.

    Article  PubMed  Google Scholar 

  11. Davis, M. E., J. P. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. Zhang, and R. T. Lee. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442–450, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Demirbag, B., P. Y. Huri, G. T. Kose, A. Buyuksungur, and V. Hasirci. Advanced cell therapies with and without scaffolds. Biotechnol. J. 6:1437–1453, 2011.

    Article  CAS  PubMed  Google Scholar 

  13. Di Lullo, G. A., S. M. Sweeney, J. Korkko, L. Ala-Kokko, and J. D. San Antonio. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277:4223–4231, 2002.

    Article  PubMed  Google Scholar 

  14. Dimmeler, S., S. Ding, T. A. Rando, and A. Trounson. Translational strategies and challenges in regenerative medicine. Nat. Med. 20:814–821, 2014.

    Article  CAS  PubMed  Google Scholar 

  15. Ellis-Behnke, R. G., Y. X. Liang, S. W. You, D. K. Tay, S. Zhang, K. F. So, and G. E. Schneider. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Sci. USA 103:5054–5059, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fishwick, C. W. G., A. J. Beevers, L. M. Carrick, C. D. Whitehouse, A. Aggeli, and N. Boden. Structures of helical β-tapes and twisted ribbons: the role of side-chain interactions on twist and bend behavior. Nano Lett. 3:1475–1479, 2003.

    Article  CAS  Google Scholar 

  17. Folkman, J., and M. Klagsbrun. Angiogenic factors. Science 235:442–447, 1987.

    Article  CAS  PubMed  Google Scholar 

  18. Forbes, S. J., and N. Rosenthal. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20:857–869, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. Gelain, F., D. Silva, A. Caprini, F. Taraballi, A. Natalello, O. Villa, K. T. Nam, R. N. Zuckermann, S. M. Doglia, and A. Vescovi. BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano 5:1845–1859, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Genove, E., C. Shen, S. Zhang, and C. E. Semino. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26:3341–3351, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Giano, M. C., D. J. Pochan, and J. P. Schneider. Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32:6471–6477, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Haines-Butterick, L., K. Rajagopal, M. Branco, D. Salick, R. Rughani, M. Pilarz, M. S. Lamm, D. J. Pochan, and J. P. Schneider. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. USA 104:7791–7796, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hartgerink, J. D., E. Beniash, and S. I. Stupp. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Hernandez-Gordillo, V., and J. Chmielewski. Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds. Biomaterials 35:7363–7373, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Horner, P. J., and F. H. Gage. Regenerating the damaged central nervous system. Nature 407:963–970, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Jung, J. P., A. K. Nagaraj, E. K. Fox, J. S. Rudra, J. M. Devgun, and J. H. Collier. Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 30:2400–2410, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Khurana, R., M. Simons, J. F. Martin, and I. C. Zachary. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112:1813–1824, 2005.

    Article  PubMed  Google Scholar 

  29. Kim, M.-H., M. Park, K. Kang, and I. S. Choi. Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomater. Sci. 2:148–155, 2014.

    Article  CAS  Google Scholar 

  30. Kong, H. J., and D. J. Mooney. Microenvironmental regulation of biomacromolecular therapies. Nat. Rev. Drug Discov. 6:455–463, 2007.

    Article  CAS  PubMed  Google Scholar 

  31. Kretsinger, J. K., L. A. Haines, B. Ozbas, D. J. Pochan, and J. P. Schneider. Cytocompatibility of self-assembled β-hairpin peptide hydrogel surfaces. Biomaterials 26:5177–5186, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar, V. A., N. L. Taylor, A. A. Jalan, L. K. Hwang, B. K. Wang, and J. D. Hartgerink. A nanostructured synthetic collagen mimic for hemostasis. Biomacromolecules 15:1484–1490, 2014.

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S. S., B. J. Huang, S. R. Kaltz, S. Sur, C. J. Newcomb, S. R. Stock, R. N. Shah, and S. I. Stupp. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials 34:452–459, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lee, S. S., E. L. Hsu, M. Mendoza, J. Ghodasra, M. S. Nickoli, A. Ashtekar, M. Polavarapu, J. Babu, R. M. Riaz, J. D. Nicolas, D. Nelson, S. Z. Hashmi, S. R. Kaltz, J. S. Earhart, B. R. Merk, J. S. McKee, S. F. Bairstow, R. N. Shah, W. K. Hsu, and S. I. Stupp. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 2014. doi:10.1002/adhm.201400129.

    Google Scholar 

  35. Li, A., A. Hokugo, A. Yalom, E. J. Berns, N. Stephanopoulos, M. T. McClendon, L. A. Segovia, I. Spigelman, S. I. Stupp, and R. Jarrahy. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials 35:8780–8790, 2014.

    Article  CAS  PubMed  Google Scholar 

  36. Lin, Y. D., C. Y. Luo, Y. N. Hu, M. L. Yeh, Y. C. Hsueh, M. Y. Chang, D. C. Tsai, J. N. Wang, M. J. Tang, E. I. Wei, M. L. Springer, and P. C. Hsieh. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci. Transl. Med. 4:146ra109, 2012.

    PubMed  Google Scholar 

  37. Lutolf, M. P., P. M. Gilbert, and H. M. Blau. Designing materials to direct stem-cell fate. Nature 462:433–441, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mason, J. M., and K. M. Arndt. Coiled coil domains: stability, specificity, and biological implications. ChemBioChem 5:170–176, 2004.

    Article  CAS  PubMed  Google Scholar 

  39. Mata, A., Y. B. Geng, K. J. Henrikson, C. Aparicio, S. R. Stock, R. L. Satcher, and S. I. Stupp. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 31:6004–6012, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Matson, J. B., R. H. Zha, and S. I. Stupp. Peptide self-assembly for crafting functional biological materials. Curr. Opin. Solid State Mater. Sci. 15:225–235, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Matsuurua, K. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv. 4:2942–2953, 2014.

    Article  CAS  Google Scholar 

  42. McClendon, M. T., and S. I. Stupp. Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells. Biomaterials 33:5713–5722, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mehrban, N., E. Abelardo, A. Wasmuth, K. L. Hudson, L. M. Mullen, A. R. Thomson, M. A. Birchall, and D. N. Woolfson. Assessing cellular response to functionalized alpha-helical peptide hydrogels. Adv. Healthc. Mater. 3:1387–1391, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Moyer, T. J., H. G. Cui, and S. I. Stupp. Tuning nanostructure dimensions with supramolecular twisting. J. Phys. Chem. B 117:4604–4610, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Müller-Mai, C. M., S. I. Stupp, C. Voigt, and U. Gross. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. J. Biomed. Mater. Res. 29:9–18, 1995.

    Article  PubMed  Google Scholar 

  46. Newcomb, C. J., R. Bitton, Y. S. Velichko, M. L. Snead, and S. I. Stupp. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. Small 8:2195–2202, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. O’Leary, L. E., J. A. Fallas, E. L. Bakota, M. K. Kang, and J. D. Hartgerink. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 3:821–828, 2011.

    Article  PubMed  Google Scholar 

  48. Palmer, L. C., C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, and S. I. Stupp. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108:4754–4783, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Palmgren, B., Y. Jiao, E. Novozhilova, S. I. Stupp, and P. Olivius. Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve. Exp. Neurol. 235:599–609, 2012.

    Article  CAS  PubMed  Google Scholar 

  50. Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4:160–164, 2012.

    Article  Google Scholar 

  51. Pashuck, E. T., H. G. Cui, and S. I. Stupp. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc. 132:6041–6046, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pires, M. M., D. E. Przybyla, and J. Chmielewski. A metal-collagen peptide framework for three-dimensional cell culture. Angew. Chem. Int. Ed. Engl. 48:7813–7817, 2009.

    Article  CAS  PubMed  Google Scholar 

  53. Rajangam, K., H. A. Behanna, M. J. Hui, X. Q. Han, J. F. Hulvat, J. W. Lomasney, and S. I. Stupp. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett. 6:2086–2090, 2006.

    Article  CAS  PubMed  Google Scholar 

  54. Reddi, A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 16:247–252, 1998.

    Article  CAS  PubMed  Google Scholar 

  55. Saha, K., A. J. Keung, E. F. Irwin, Y. Li, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Schneider, J. P., D. J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis, and J. Kretsinger. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124:15030–15037, 2002.

    Article  CAS  PubMed  Google Scholar 

  57. Semino, C. E., J. R. Merok, G. G. Crane, G. Panagiotakos, and S. Zhang. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270, 2003.

    Article  CAS  PubMed  Google Scholar 

  58. Silva, G. A., C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler, and S. I. Stupp. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355, 2004.

    Article  CAS  PubMed  Google Scholar 

  59. Silver, J., and J. H. Miller. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5:146–156, 2004.

    Article  CAS  PubMed  Google Scholar 

  60. Stendahl, J. C., L. J. Wang, L. W. Chow, D. B. Kaufman, and S. I. Stupp. Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation 86:478–481, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11:18–25, 2008.

    Article  CAS  Google Scholar 

  62. Storrie, H., M. O. Guler, S. N. Abu-Amara, T. Volberg, M. Rao, B. Geiger, and S. I. Stupp. Supramolecular crafting of cell adhesion. Biomaterials 28:4608–4618, 2007.

    Article  CAS  PubMed  Google Scholar 

  63. Sur, S., E. T. Pashuck, M. O. Guler, M. Ito, S. I. Stupp, and T. Launey. A hybrid nanofiber matrix to control the survival and maturation of brain neurons. Biomaterials 33:545–555, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Sur, S., C. J. Newcomb, M. J. Webber, and S. I. Stupp. Tuning supramolecular mechanics to guide neuron development. Biomaterials 34:4749–4757, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Sur, S., M. O. Guler, M. J. Webber, E. T. Pashuck, M. Ito, S. I. Stupp, and T. Launey. Synergistic regulation of cerebellar Purkinje neuron development by laminin epitopes and collagen on an artificial hybrid matrix construct. Biomater. Sci. 2:903–914, 2014.

    Article  CAS  PubMed  Google Scholar 

  66. Tongers, J., J. G. Roncalli, and D. W. Losordo. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 118:9–16, 2008.

    Article  PubMed  Google Scholar 

  67. Tysseling-Mattiace, V. M., V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, S. I. Stupp, and J. A. Kessler. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28:3814–3823, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Velichko, Y. S., S. I. Stupp, and M. O. de la Cruz. Molecular simulation study of peptide amphiphile self-assembly. J. Phys. Chem. B 112:2326–2334, 2008.

    Article  CAS  PubMed  Google Scholar 

  69. Webber, M. J., J. Tongers, C. J. Newcomb, K.-T. Marquardt, J. Bauersachs, D. W. Losordo, and S. I. Stupp. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl. Acad. Sci. USA 108:13438–13443, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Webber, M. J., E. J. Berns, and S. I. Stupp. Supramolecular nanofibers of peptide amphiphiles for medicine. Israel J. Chem. 53:530–554, 2013.

    Article  CAS  Google Scholar 

  71. White, H. D., and D. P. Chew. Acute myocardial infarction. Lancet 372:570–584, 2008.

    Article  CAS  PubMed  Google Scholar 

  72. Yokoi, H., T. Kinoshita, and S. Zhang. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA 102:8414–8419, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Zhang, S., T. Holmes, C. Lockshin, and A. Rich. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 90:3334–3338, 1993.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Zhang, S., M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton, J. R. Mantei, C. Aparicio, M. O. de la Cruz, and S. I. Stupp. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9:594–601, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research performed by the laboratory of the authors described in the review articles was supported by grants from the National Institutes of Health (NIH): National Institute of Dental and Craniofacial Research (NIDCR) (5R01DE015920–9), Bioengineering Research Partnerships (BRP) (5R01EB003806–09, 5R01HL116577–02), Center of Cancer Nanotechnology Excellence (CCNE) (F5U54CA151880–05), and Project Parent Grant (PPG) (P01HL108795–04), as well as the Dixon Translational Research Grant and the Center for Regenerative Nanomedicine Award at the Simpson Querrey Institute. C.M.R.P. gratefully acknowledges support from a BRP Supplement Award (3R01EB003806–09S1), N.S. from an International Institute for Nanotechnology (IIN) Postdoctoral Fellowship and from a Ruth L. Kirschstein NRSA Postdoctoral Fellowship (5F32NS077728-03), and S.S.L. from a Samsung Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel I. Stupp.

Additional information

Associate Editor Rosemarie Hunziker oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubert Pérez, C.M., Stephanopoulos, N., Sur, S. et al. The Powerful Functions of Peptide-Based Bioactive Matrices for Regenerative Medicine. Ann Biomed Eng 43, 501–514 (2015). https://doi.org/10.1007/s10439-014-1166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1166-6

Keywords

Navigation