Skip to main content
Log in

Effects of Degree of Surgical Correction for Flatfoot Deformity in Patient-Specific Computational Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A cohort of adult acquired flatfoot deformity rigid-body models was developed to investigate the effects of isolated tendon transfer with successive levels of medializing calcaneal osteotomy (MCO). Following IRB approval, six diagnosed flatfoot sufferers were subjected to magnetic resonance imaging (MRI) and their scans used to derive patient-specific models. Single-leg stance was modeled, constrained solely through physiologic joint contact, passive soft-tissue tension, extrinsic muscle force, body weight, and without assumptions of idealized mechanical joints. Surgical effect was quantified using simulated mediolateral (ML) and anteroposterior (AP) X-rays, pedobarography, soft-tissue strains, and joint contact force. Radiographic changes varied across states with the largest average improvements for the tendon transfer (TT) + 10 mm MCO state evidenced through ML and AP talo-1st metatarsal angles. Interestingly, 12 of 14 measures showed increased deformity following TT-only, though all increases disappeared with inclusion of MCO. Plantar force distributions showed medial forefoot offloading concomitant with increases laterally such that the most corrected state had 9.0% greater lateral load. Predicted alterations in spring, deltoid, and plantar fascia soft-tissue strain agreed with prior cadaveric and computational works suggesting decreased strain medially with successive surgical repair. Finally, joint contact force demonstrated consistent medial offloading concomitant with variable increases laterally. Rigid-body modeling thus offers novel advantages for the investigation of foot/ankle biomechanics not easily measured in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arangio, G. A., and E. P. Salathé. Medial displacement calcaneal osteotomy reduces the excess forces in the medial longitudinal arch of the flat foot. Clin. Biomech. 16:535–539, 2001.

    Article  CAS  Google Scholar 

  2. Arangio, G. A., T. Wasser, and A. Rogman. Radiographic comparison of standing medial cuneiform arch height in adults with and without acquired flatfoot deformity. Foot Ankle Int. 27:636–638, 2006.

    PubMed  Google Scholar 

  3. Attarian, D. E., H. J. McCrackin, D. P. DeVito, J. H. McElhaney, and W. E. Garrett, Jr. Biomechanical characteristics of human ankle ligaments. Foot Ankle 6:54–58, 1985.

    Article  CAS  PubMed  Google Scholar 

  4. Bolt, P. M., S. Coy, and B. C. Toolan. A comparison of lateral column lengthening and medial translational osteotomy of the calcaneus for the reconstruction of adult acquired flatfoot. Foot Ankle Int. 28:1115–1123, 2007.

    Article  PubMed  Google Scholar 

  5. Bryant, A., P. Tinley, and K. Singer. A comparison of radiographic measurements in normal, hallux valgus, and hallux limitus feet. J. Foot Ankle Surg. 39:39–43, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Coughlin, M. J., and A. Kaz. Correlation of Harris mats, physical exam, pictures, and radiographic measurements in adult flatfoot deformity. Foot Ankle Int. 30:604–612, 2009.

    Article  PubMed  Google Scholar 

  7. Deland, J. T. The adult acquired flatfoot and spring ligament complex: Pathology and implications for treatment. Foot Ankle Clin North Am 6:129–135, 2001.

    Article  CAS  Google Scholar 

  8. Deland, J. T., R. J. de Asla, I.-H. Sung, L. A. Ernberg, and H. G. Potter. Posterior tibial tendon insufficiency: which ligaments are involved? Foot Ankle Int. 26:427–435, 2005.

    PubMed  Google Scholar 

  9. Ellis, S. J., J. C. Yu, A. H. Johnson, A. Elliott, M. O’Malley, and J. Deland. Plantar pressures in patients with and without lateral foot pain after lateral column lengthening. J. Bone Joint Surg. Am. 92:81–91, 2010.

    Article  PubMed  Google Scholar 

  10. Ellis, S. J., J. C. Yu, B. R. Williams, C. Lee, Y. Chiu, and J. T. Deland. New radiographic parameters assessing forefoot abduction in the adult acquired flatfoot deformity. Foot Ankle Int. 30:1168, 2009.

    Article  PubMed  Google Scholar 

  11. Funk, D. A., J. R. Cass, and K. A. Johnson. Acquired adult flat foot secondary to posterior tibial-tendon pathology. J. Bone Joint Surg. Am. 68:95–102, 1986.

    CAS  PubMed  Google Scholar 

  12. Goldner, J. L., P. K. Keats, F. H. Bassett, 3rd, and F. W. Clippinger. Progressive talipes equinovalgus due to trauma or degeneration of the posterior tibial tendon and medial plantar ligaments. Orthop. Clin. North Am. 5:39–51, 1974.

    CAS  PubMed  Google Scholar 

  13. Guyton, G. P., C. Jeng, L. E. Krieger, and R. A. Mann. Flexor digitorum longus transfer and medial displacement calcaneal osteotomy for posterior tibial tendon dysfunction: a middle-term clinical follow-up. Foot Ankle Int. 22:627–632, 2001.

    CAS  PubMed  Google Scholar 

  14. Hadfield, M. H., J. W. Snyder, P. C. Liacouras, J. R. Owen, J. S. Wayne, and R. S. Adelaar. Effects of medializing calcaneal osteotomy on Achilles tendon lengthening and plantar foot pressures. Foot Ankle Int. 24:523–529, 2003.

    PubMed  Google Scholar 

  15. Hiller, L., and S. J. Pinney. Surgical treatment of acquired flatfoot deformity: what is the state of practice among academic foot and ankle surgeons in 2002? Foot Ankle Int. 24:701–705, 2003.

    PubMed  Google Scholar 

  16. Horton, G. A., M. S. Myerson, B. G. Parks, and Y. W. Park. Effect of calcaneal osteotomy and lateral column lengthening on the plantar fascia: a biomechanical investigation. Foot Ankle Int. 19:370–373, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Iaquinto, J. M., and J. S. Wayne. Computational model of the lower leg and foot/ankle complex: application to arch stability. J. Biomech. Eng. 132:021009, 2010.

    Article  PubMed  Google Scholar 

  18. Iaquinto, J. M., and J. S. Wayne. Effects of surgical correction for the treatment of adult acquired flatfoot deformity: a computational investigation. J. Orthop. Res. 29:1047–1054, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Johnson, K. A., and D. E. Strom. Tibialis posterior tendon dysfunction. Clin. Orthop. Relat. Res.:196–206, 1989.

  20. Liacouras, P. C., and J. S. Wayne. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129:811, 2007.

    Article  PubMed  Google Scholar 

  21. Mann, R. A., and F. M. Thompson. Rupture of the posterior tibial tendon causing flat foot. Surgical treatment. J. Bone Joint Surg. Am. 67:556–561, 1985.

    CAS  PubMed  Google Scholar 

  22. Milner, C. E., and R. W. Soames. The medial collateral ligaments of the human ankle joint: anatomical variations. Foot Ankle Int. 19:289–292, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Mosca, V. S. Flexible flatfoot and skewfoot. J. Bone Joint Surg. 77:1937–1945, 1995.

    Google Scholar 

  24. Murley, G. S., H. B. Menz, and K. B. Landorf. A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. J. Foot Ankle Res. 2:22, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Myerson, M. S., A. Badekas, and L. C. Schon. Treatment of stage II posterior tibial tendon deficiency with flexor digitorum longus tendon transfer and calcaneal osteotomy. Foot Ankle Int. 25:445–450, 2004.

    PubMed  Google Scholar 

  26. Myerson, M. S., and J. Corrigan. Treatment of posterior tibial tendon dysfunction with flexor digitorum longus tendon transfer and calcaneal osteotomy. Orthopedics 19:383–388, 1996.

    CAS  PubMed  Google Scholar 

  27. Myerson, M. S., J. Corrigan, F. Thompson, and L. C. Schon. Tendon transfer combined with calcaneal osteotomy for treatment of posterior tibial tendon insufficiency: a radiological investigation. Foot Ankle Int. 16:712–718, 1995.

    Article  CAS  PubMed  Google Scholar 

  28. Neufeld, S. K., and M. S. Myerson. Complications of surgical treatments for adult flatfoot deformities. Foot Ankle Clin. 6:179–191, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Niki, H., T. Hirano, H. Okada, and M. Beppu. Outcome of medial displacement calcaneal osteotomy for correction of adult-acquired flatfoot. Foot Ankle Int. 33:940–946, 2012.

    Article  PubMed  Google Scholar 

  30. Nyska, M., B. G. Parks, I. T. Chu, and M. S. Myerson. The contribution of the medial calcaneal osteotomy to the correction of flatfoot deformities. Foot Ankle Int. 22:278–282, 2001.

    CAS  PubMed  Google Scholar 

  31. Otis, J. C., J. T. Deland, S. Kenneally, and V. Chang. Medial arch strain after medial displacement calcaneal osteotomy: an in vitro study. Foot Ankle Int. 20:222–226, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Phillips, G. E. A review of elongation of os calcis for flat feet. J. Bone Joint Surg. Br. 65-B:15–18, 1983.

  33. Resnick, R. B., M. H. Jahss, J. Choueka, F. Kummer, J. C. Hersch, and E. Okereke. Deltoid ligament forces after tibialis posterior tendon rupture: effects of triple arthrodesis and calcaneal displacement osteotomies. Foot Ankle Int. 16:14–20, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Richie, D. H. Biomechanics and clinical analysis of the adult acquired flatfoot. Clin. Podiatr. Med. Surg. 24:617–644, 2007.

    Article  PubMed  Google Scholar 

  35. Salathé, E. P., and G. A. Arangio. A biomechanical model of the foot: the role of muscles, tendons, and ligaments. J. Biomech. Eng. 124:281–287, 2002.

    Article  PubMed  Google Scholar 

  36. Saltzman, C. L., D. A. Nawoczenski, and K. D. Talbot. Measurement of the medial longitudinal arch. Arch. Phys. Med. Rehabil. 76:45–49, 1995.

    Article  CAS  PubMed  Google Scholar 

  37. Sammarco, G. J., and R. T. Hockenbury. Treatment of stage II posterior tibial tendon dysfunction with flexor hallucis longus transfer and medial displacement calcaneal osteotomy. Foot Ankle Int. 22:305–312, 2001.

    CAS  PubMed  Google Scholar 

  38. Sangeorzan, B. J., V. Mosca, and S. T. Hansen, Jr. Effect of calcaneal lengthening on relationships among the hindfoot, midfoot, and forefoot. Foot Ankle 14:136–141, 1993.

    Article  CAS  PubMed  Google Scholar 

  39. Sarrafian, S. K. Anatomy of the Foot and Ankle: Descriptive, Topographic, Functional. Philadelphia, PA: Lippincott, p. 648, 1993.

    Google Scholar 

  40. Schuh, R., F. Gruber, A. Wanivenhaus, N. Hartig, R. Windhager, and H.-J. Trnka. Flexor digitorum longus transfer and medial displacement calcaneal osteotomy for the treatment of stage II posterior tibial tendon dysfunction: kinematic and functional results of fifty one feet. Int. Ortho.:1–6, 2013.

  41. Siegler, S., J. Block, and C. D. Schneck. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 8:234–242, 1988.

    Article  CAS  PubMed  Google Scholar 

  42. Song, S. J., S. Lee, M. J. O’Malley, J. C. Otis, H. Sung, and J. T. Deland. Deltoid ligament strain after correction of acquired flatfoot deformity by triple arthrodesis. Foot Ankle Int. 21:573–577, 2000.

    CAS  PubMed  Google Scholar 

  43. Spratley, E. M., J. M. Arnold, J. R. Owen, C. D. Glezos, R. S. Adelaar, and J. S. Wayne. Plantar forces in flexor hallucis longus versus flexor digitorum longus transfer in adult acquired flatfoot deformity. Foot Ankle Int. 34:1286–1293, 2013.

    Article  PubMed  Google Scholar 

  44. Spratley, E. M., E. A. Matheis, C. W. Hayes, R. S. Adelaar, and J. S. Wayne. Validation of a population of patient-specific adult acquired flatfoot deformity models. J. Orthop. Res. 31:1861–1868, 2013.

    Article  PubMed  Google Scholar 

  45. Spratley, E. M., E. A. Matheis, C. W. Hayes, R. S. Adelaar, and J. S. Wayne. A population of patient-specific adult acquired flatfoot deformity models before and after surgery. Ann. Biomed. Eng. 42:1913–1922, 2014.

    Article  CAS  PubMed  Google Scholar 

  46. Spratley, E. M., and J. S. Wayne. Computational model of the human elbow and forearm: application to complex varus instability. Ann. Biomed. Eng. 39:1084–1091, 2010.

    Article  PubMed  Google Scholar 

  47. Thomas, J., M. Kunkel, R. Lopez, and D. Sparks. Radiographic values of the adult foot in a standardized population. J. Foot Ankle Surg. 45:3–12, 2006.

    Article  PubMed  Google Scholar 

  48. Thordarson, D. B., P. Merkle, T. Hedman, and W.-L. Liao. An evaluation of the inversion torque of the posterior tibialis versus flexor digitorum longus and flexor hallucis longus posterior tibialis tendon reconstructions. Foot 6:134–137, 1996.

    Article  Google Scholar 

  49. Trnka, H. J., M. E. Easley, and M. S. Myerson. The role of calcaneal osteotomies for correction of adult flatfoot. Clin. Orthop. Relat. Res.:50–64, 1999.

  50. van der Krans, A., J. W. K. Louwerens, and P. Anderson. Adult acquired flexible flatfoot, treated by calcaneo-cuboid distraction arthrodesis, posterior tibial tendon augmentation, and percutaneous Achilles tendon lengthening: a prospective outcome study of 20 patients. Acta Orthop. 77:156–163, 2006.

    Article  PubMed  Google Scholar 

  51. Ward, K. A., and R. W. Soames. Morphology of the plantar calcaneocuboid ligaments. Foot Ankle Int. 18:649–653, 1997.

    Article  CAS  PubMed  Google Scholar 

  52. Wei, F., S. C. Hunley, J. W. Powell, and R. C. Haut. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation. Ann. Biomed. Eng. 39:756–765, 2010.

    Article  PubMed  Google Scholar 

  53. Williams, G., J. Widnall, P. Evans, and S. Platt. MRI features most often associated with surgically proven tears of the spring ligament complex. Skeletal Radiol. 42:969–973, 2013.

    Article  PubMed  Google Scholar 

  54. Younger, A. S., B. Sawatzky, and P. Dryden. Radiographic assessment of adult flatfoot. Foot Ankle Int. 26:820–825, 2005.

    PubMed  Google Scholar 

  55. Zanolli, D. H., R. R. Glisson, I. James, A. Nunley, and M. E. Easley. Biomechanical assessment of flexible flatfoot correction, comparison of techniques in a cadaver model. J. Bone Joint Surg. Am. 96:1–8, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

The authors received no external financial support for this work. The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Wayne.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spratley, E.M., Matheis, E.A., Hayes, C.W. et al. Effects of Degree of Surgical Correction for Flatfoot Deformity in Patient-Specific Computational Models. Ann Biomed Eng 43, 1947–1956 (2015). https://doi.org/10.1007/s10439-014-1195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1195-1

Keywords

Navigation