Skip to main content
Log in

Design Optimisation of Coronary Artery Stent Systems

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In recent years, advances in computing power and computational methods have made it possible to perform detailed simulations of the coronary artery stenting procedure and of related virtual tests of performance (including fatigue resistance, corrosion and haemodynamic disturbance). Simultaneously, there has been a growth in systematic computational optimisation studies, largely exploiting the suitability of surrogate modelling methods to time-consuming simulations. To date, systematic optimisation has focussed on stent shape optimisation and has re-affirmed the complexity of the multi-disciplinary, multi-objective problem at hand. Also, surrogate modelling has predominantly involved the method of Kriging. Interestingly, though, optimisation tools, particularly those associated with Kriging, haven’t been used as efficiently as they could have been. This has especially been the case with the way that Kriging predictor functions have been updated during the search for optimal designs. Nonetheless, the potential for future, carefully posed, optimisation strategies has been suitably demonstrated, as described in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. ACCF/AHA/SCAI: American College of Cardiology Foundation/American Heart Association/Society for Cardiovascular Angiography and Interventions.

  2. DACE: Design and analysis of computer experiments.

References

  1. Amirjani, A., M. Yousefi, and M. Cheshmaroo. Parametrical optimization of stent design; a numerical-based approach. Comput. Mat. Sci. 90:210–220, 2014.

    Article  CAS  Google Scholar 

  2. Atherton, M. A., and R. A. Bates. Robust optimization of cardiovascular stents: a comparison of methods. Eng. Optimiz. 36(2):207–217, 2004.

    Article  Google Scholar 

  3. Auricchio, F., M. Di Loreto, and E. Sacco. Finite element analysis of a stenotic artery revascularisation through a stent insertion. Comput. Methods Biomech. Biomed. Eng. 4:249–263, 2001.

    Article  Google Scholar 

  4. Azaouzi, M., N. Lebaal, A. Makradi, and S. Belouettar. Optimization based simulation of self-expanding Nitinol stent. Mater. Des. 50:917–928, 2013.

    Article  CAS  Google Scholar 

  5. Blouza, A., L. Dumas and I. M’Baye. Multiobjective optimization of a stent in a fluid-structure context. Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation, pp. 2055–2060, 2008.

  6. Booker, A. J., J. E. Dennis, P. D. Frank, D. B. Serafini, and V. Torczon. A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17:1–13, 1999.

    Article  Google Scholar 

  7. Bozsak, F., D. Gonzalez-Rodriguez, Z. Sternberger, P. Belitz, T. Bewley, J-M. Chomaz, and A. I. Barakat. Optimization of drug delivery by drug-eluting stents. PLoS One 10(6):e0130182, 2015. doi:10.1371/journal.pone.0130182.

  8. Caixeta, A., P. Genereux, G. Dangas, and R. Mehran. In-stent restenosis in the drug-eluting stent era. In: Chapter 28 in Oxford Textbook of Interventional Cardiology, edited by S. Redwood, N. Curzen, and M. Thomas. Oxford: Oxford University Press, 2010.

    Google Scholar 

  9. Clune, R., D. Kelliher, J. C. Robinson, and J. S. Campbell. NURBS modeling and structural shape optimization of cardiovascular stents. Struct. Multidisc. Optim. 50:159–168, 2014.

    Article  Google Scholar 

  10. Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3(4):374–387, 2012.

    Article  Google Scholar 

  11. De Beule, M., S. Van Cauter, P. Mortier, D. Van Loo, R. Van Impe, and P. Verdonck. Virtual optimization of self-expandable braided wire stents. Med. Eng. Phys. 31:448–453, 2009.

    Article  PubMed  Google Scholar 

  12. Deb, K., and R. B. Agrawal. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2):182–197, 2002.

    Article  Google Scholar 

  13. Deb, K., M. Mohan and S. Mishra. A fast multiobjective evolutionary algorithm for finding well-spread pareto-optimal solutions. KanGAL Report Number 2003002, 2003.

  14. Dumoulin, C., and B. Cochelin. Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33:1461–1470, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Etave, F., G. Finet, M. Boivin, J. Boyer, G. Rioufol, and G. Thollet. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. FDA. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems. http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071863.htm. 2010. Accessed 1st April 2015.

  17. Forrester, A. I. J., A. Sóbester, and A. J. Keane. Engineering Design via Surrogate Modelling: A Practical Guide. Chichester: Wiley, 2008.

    Book  Google Scholar 

  18. Gijsen, F., F. Migliavacca, S. Schievano, L. Socci, L. Petrini, A. Thury, J. Wentzel, A. van der Steen, P. Serruys, and G. Dubini. Simulation of stent deployment in a realistic human coronary artery. BioMed. Eng. OnLine 7:23, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34(33):8049–8060, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Gundert, T. J., A. L. Marsden, W. Yang, and J. F. LaDisa, Jr. Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134:011002-1–011002-8, 2012.

    Google Scholar 

  21. Harewood, F., R. Thornton and P. Sharp. Step change in design: exploring sixty stent design variations overnight. www.altairproductdesign.com, 2011.

  22. Harold, J. G., T. A. Bass, T. M. Bashore, et al. ACCF/AHA/SCAI, Update of the clinical competence statement on coronary artery interventional procedures. J. Am. Coll. Cardiol. 128:436–472, 2013.

    Google Scholar 

  23. He, Y., N. Duraiswamy, A. O. Frank, and J. E. Moore, Jr. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. ASME J. Biomech. Eng. 127:637–647, 2005.

    Article  Google Scholar 

  24. Johnson, P. M., J. Patel, M. Yeung, and P. Kaul. Intra-coronary imaging modalities. Curr. Treat. Options Cardiovasc. Med. 16:304, 2014.

    Article  PubMed  Google Scholar 

  25. Jones, D. R. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4):345–383, 2001.

    Article  Google Scholar 

  26. Krige, D. G. A statistical approach to some basic mine valuation problems on the Wit-watersrand. J. Chem. Metall. Miner. Soc. SA 52(6):119–139, 1951.

    Google Scholar 

  27. Levine, G. N., E. R. Bates, J. C. Blankenship, et al. ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J. Am. Coll. Cardiol. 58:e44–e122, 2011.

    Article  PubMed  Google Scholar 

  28. Li, H., T. Qiu, B. Zhu, J. Wu, and X. Wang. Design optimization of coronary stent based on finite element models. Sci. World J. 2013:630243, 2013.

    Google Scholar 

  29. Li, N., H. Zhang, and H. Ouyang. Shape optimization of coronary artery stent based on a parametric model. Finite Elem. Anal. Des. 45:468–475, 2009.

    Article  Google Scholar 

  30. Lophaven, S., H. Nielsen and J. Søndergaard. DACE—A MATLAB Kriging Toolbox Version 2.0, Technical University of Denmark, Copenhagen, Technical Report IMM-TR-2002-12, 2002.

  31. Martin, D., and F. J. Boyle. Computational structural modelling of coronary stent deployment: a review. Comput. Methods Biomech. Biomed. Eng. 14(4):331–348, 2011.

    Article  Google Scholar 

  32. Migliavacca, F., L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002.

    Article  PubMed  Google Scholar 

  33. Morice, M.-C., P. Serruys, J. Sousa, J. Fajadet, E. Ban Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, et al. The RAVEL Study Group. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346:1773–1780, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: where we are, where to go? Ann. Biomed. Eng. 41(7):1428–1444, 2013.

    Article  PubMed  Google Scholar 

  35. Morris, M. D., and T. J. Mitchell. Exploratory designs for computational experiments. J. Stat. Plan. Inference 43:381–402, 1995.

    Article  Google Scholar 

  36. Moses, J., M. Leon, J. Popma, P. Fitzgerald, D. Holmes, C. O’Shaughnessy, R. Caputo, D. Kereiakes, D. Williams, P. Teirstein, et al. The SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.

    Article  CAS  PubMed  Google Scholar 

  37. Murphy, J., and F. J. Boyle. Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Comput. Biol. Med. 40:408–418, 2010.

    Article  PubMed  Google Scholar 

  38. Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimisation of coronary stents. Biomech. Model Mechanobiol. 11(1):61–82, 2012.

    Article  PubMed  Google Scholar 

  39. Pant, S., G. Limbert, N. Curzen, and N. W. Bressloff. Multi-objective design optimisation of coronary stents. Biomaterials 32:7755–7773, 2011.

    Article  CAS  PubMed  Google Scholar 

  40. Rogers, C., D. Y. Tseng, J. C. Squere, and E. R. Edelman. Balloon-artery interactions during stent placement. A finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999.

    Article  CAS  PubMed  Google Scholar 

  41. Srinivas, K., T. Nakayama, M. Ohta, S. Obayashi, and T. Yamaguchi. Studies on design optimization of coronary stents. ASME J. Med. Devices 2(1):011004, 2008.

    Article  Google Scholar 

  42. Statnikov, R., and J. Matusov. Multicriteria Analysis in Engineering: Using the PSI Method with MOVI 1.0. Dordrecht: Kluwer Academic Publications, 2002.

    Book  Google Scholar 

  43. Stoeckel, D., C. Bonsignore, and S. Duda. A survey of stent designs. Minim. Invasive Ther. Allied Technol. 11(4):137–147, 2002.

    Article  Google Scholar 

  44. Timmins, L. H., M. R. Moreno, C. A. Meyer, J. C. Criscione, A. Rachev, and J. E. Moore, Jr. Stented artery biomechanics and device design optimization. Med. Biol. Eng. Comput. 45(5):505–513, 2007.

    Article  PubMed  Google Scholar 

  45. Wang, W.-Q., D.-K. Liang, D.-Z. Liang, and M. Qi. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 29:21–32, 2006.

    Article  Google Scholar 

  46. Wu, W., L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, B. Previtali, and F. Migliavacca. Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng. 38(9):2829–2840, 2010.

    Article  CAS  PubMed  Google Scholar 

  47. Wu, W., D. Z. Yang, Y. Y. Huang, M. Qi, and W. Q. Wang. Topology optimization of a novel stent platform with drug reservoirs. Med. Eng. Phys. 30(9):1177–1185, 2008.

    Article  PubMed  Google Scholar 

  48. Yoon, H.-J., and S.-H. Hur. Optimization of stent deployment by intravascular ultrasound. Korean J. Int. Med. 27:30–38, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Medtronic Inc. (Minnesota, USA) for their unrestricted support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil W. Bressloff.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bressloff, N.W., Ragkousis, G. & Curzen, N. Design Optimisation of Coronary Artery Stent Systems. Ann Biomed Eng 44, 357–367 (2016). https://doi.org/10.1007/s10439-015-1373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1373-9

Key terms

Navigation