Skip to main content
Log in

A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness, cell–matrix adhesion and cross-linking, deeper understanding of the most important biomechanical or biochemical properties of the ECM causing changes in sprout morphogenesis is crucial. Here, we implemented both computational and experimental methods to analyze the mechanisms responsible for the influence of ECM density on the sprout formation that is difficult to be investigated comprehensively using each of these single methods. For this purpose, we first utilized an innovative approach to quantify the correspondence of the simulated collagen fibril density to the collagen density in the experimental part. Comparing the results of the experimental study and computational model led to some considerable achievements. First, we verified the results of the computational model using the experimental results. Then, we reported parameters such as the ratio of proliferating cells to migrating cells that was difficult to obtain from experimental study. Finally, this integrative system led to gain an understanding of the possible mechanisms responsible for the effect of ECM density on angiogenesis. The results showed that stable and long sprouts were observed at an intermediate collagen matrix density of 1.2 and 1.9 mg/ml due to a balance between the number of migrating and proliferating cells. As a result of weaker connections between the cells and matrix, a lower collagen matrix density (0.7 mg/ml) led to unstable and broken sprouts. However, higher matrix density (2.7 mg/ml) suppressed sprout formation due to the high level of matrix entanglement, which inhibited cell migration. This study also showed that extracellular matrix density can influence sprout branching. Our experimental results support this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alberts, B., et al. Molecular Biology of the Cell (4th ed.). New York: Garland Science, 2002.

    Google Scholar 

  2. Anderson, A. R. A., and M. A. J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5):857–899, 1998.

    Article  CAS  PubMed  Google Scholar 

  3. Asahara, T., et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85(3):221–228, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Bauer, A. L., T. L. Jackson, and Y. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92(9):3105–3121, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bauer, A. L., T. L. Jackson, and Y. Jiang. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7):e1000445, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bauer, A. L., et al. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites. PLoS Comput. Biol. 6(11):e1001007, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bauer, A. L., et al. Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J. Theor. Biol. 264(3):838–846, 2010.

    Article  CAS  PubMed  Google Scholar 

  8. Bentley, K., M. Jones, and B. Cruys. Predicting the future: towards symbiotic computational and experimental angiogenesis research. Exp. Cell Res. 319(9):1240–1246, 2013.

    Article  CAS  PubMed  Google Scholar 

  9. Boas, S. E. M., et al. Computational modeling of angiogenesis: towards a multi-scale understanding of cell-cell and cell-matrix interactions. Mechanical and Chemical Signaling in Angiogenesis, Berlin: Springer, 2013, pp. 161–183.

    Chapter  Google Scholar 

  10. Chen, R. R., et al. Integrated approach to designing growth factor delivery systems. FASEB J. 21(14):3896–3903, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Chung, S., et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275, 2009.

    Article  CAS  PubMed  Google Scholar 

  12. Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31(33):8596–8607, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daub, J. T., and R. M. H. Merks. A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 75(8):1377–1399, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, G. E., K. J. Bayless, and A. Mavila. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268(3):252–275, 2002.

    Article  CAS  PubMed  Google Scholar 

  15. De Bock, K., M. Georgiadou, and P. Carmeliet. Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 18(5):634–647, 2013.

    Article  PubMed  Google Scholar 

  16. Edgar, L. T., et al. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One 9(1):e85178, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Edgar, L. T., et al. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J. Biomech. Eng. 136(2):021001, 2014.

    Article  PubMed  Google Scholar 

  18. Farahat, W. A., et al. Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures. PLoS One 7(5):e37333, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrara, N., H.-P. Gerber, and J. LeCouter. The biology of VEGF and its receptors. Nat. Med. 9(6):669–676, 2003.

    Article  CAS  PubMed  Google Scholar 

  20. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1(1):27–30, 1995.

    Article  CAS  PubMed  Google Scholar 

  21. Folkman, J., and P. A. D’Amore. Blood vessel formation: what is its molecular basis? Cell 87(7):1153–1155, 1996.

    Article  CAS  PubMed  Google Scholar 

  22. Friedl, P., and E. B. Bröcker. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. CMLS 57(1):41–64, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Gerhardt, H., et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161(6):1163–1177, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghajar, C. M., et al. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12(10):2875–2888, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Ghajar, C. M., et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94(5):1930–1941, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7(3):211–224, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Hanahan, D., and J. Folkman. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Helm, C.-L. E., et al. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA 102(44):15779–15784, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herbert, S. P., and D. Y. R. Stainier. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12(9):551–564, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holash, J., et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998, 1999.

    Article  CAS  PubMed  Google Scholar 

  31. Irvin, M. W., et al. Techniques and assays for the study of angiogenesis. Exp. Biol Med. 239:1476–1488, 2014.

    Article  Google Scholar 

  32. Jabbarzadeh, E., and C. F. Abrams. Simulations of chemotaxis and random motility in 2D random porous domains. Bull. Math. Biol. 69(2):747–764, 2007.

    Article  PubMed  Google Scholar 

  33. Jabbarzadeh, E., and C. F. Abrams. Strategies to enhance capillary formation inside biomaterials: a computational study. Tissue Eng. 13(8):2073–2086, 2007.

    Article  CAS  PubMed  Google Scholar 

  34. Jakobsson, L., et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10):943–953, 2010.

    Article  CAS  PubMed  Google Scholar 

  35. Jamali, Y., M. Azimi, and M. R. K. Mofrad. A sub-cellular viscoelastic model for cell population mechanics. PLoS One 5(8):e12097, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kleinstreuer, N., et al. A computational model predicting disruption of blood vessel development. PLoS Comput. Biol. 9(4):e1002996, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kniazeva, E., and A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. 297(1):C179–C187, 2009.

    Article  CAS  Google Scholar 

  38. Korff, T., and H. G. Augustin. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112(19):3249–3258, 1999.

    CAS  PubMed  Google Scholar 

  39. Krasik, E. F., and D. A. Hammer. A semianalytic model of leukocyte rolling. Biophys. J. 87(5):2919–2930, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kroon, M. E., et al. Collagen type 1 retards tube formation by human microvascular endothelial cells in a fibrin matrix. Angiogenesis 5(4):257–265, 2002.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, J., et al. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J. Biol. Chem. 274(22):15781–15785, 1999.

    Article  CAS  PubMed  Google Scholar 

  42. McDougall, S. R., A. R. A. Anderson, and M. A. J. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3):564–589, 2006.

    Article  PubMed  Google Scholar 

  43. Mortimer, D., et al. Axon guidance by growth-rate modulation. Proc. Natl. Acad. Sci. 107(11):5202–5207, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mousa, S. A., and P. J. Davis. Angiogenesis assays: an appraisal of current techniques. Angiogenesis Modulations in Health and Disease, Dordrecht: Springer, 2013, pp. 1–12.

    Chapter  Google Scholar 

  45. Moussavi-Baygi, R., et al. Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys. J. 100(6):1410–1419, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakayama, M., et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15(3):249–260, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nguyen, D.-H. T., et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl. Acad. Sci. 110(17):6712–6717, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peirce, S. M., F. Mac Gabhann, and V. L. Bautch. Integration of experimental and computational approaches to sprouting angiogenesis. Curr. Opin. Hematol. 19(3):184–191, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Phng, L.-K., F. Stanchi, and H. Gerhardt. Filopodia are dispensable for endothelial tip cell guidance. Development 140(19):4031–4040, 2013.

    Article  CAS  PubMed  Google Scholar 

  50. Qutub, A. A., and A. S. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3(1):13, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shamloo, A., and S. C. Heilshorn. Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10(22):3061–3068, 2010.

    Article  CAS  PubMed  Google Scholar 

  52. Shamloo, A., et al. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299, 2008.

    Article  CAS  PubMed  Google Scholar 

  53. Shin, Y., et al. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11(13):2175–2181, 2011.

    Article  CAS  PubMed  Google Scholar 

  54. Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297(2):574–584, 2004.

    Article  CAS  PubMed  Google Scholar 

  55. Sieminski, A. L., et al. The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochem. Biophys. 49(2):73–83, 2007.

    Article  CAS  PubMed  Google Scholar 

  56. Smith, Q., and S. Gerecht. Going with the flow: microfluidic platforms in vascular tissue engineering. Curr. Opin. Chem. Eng. 3:42–50, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Song, J. W., D. Bazou, and L. L. Munn. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr. Biol. 4(8):857–862, 2012.

    Article  CAS  Google Scholar 

  58. Stokes, C. L., and D. A. Lauffenburger. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152(3):377–403, 1991.

    Article  CAS  PubMed  Google Scholar 

  59. Tammela, T., et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660, 2008.

    Article  CAS  PubMed  Google Scholar 

  60. Vasudev, N. S., and A. R. Reynolds. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17:471–494, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vickerman, V., et al. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vickerman, V., C. Kim, and R. D. Kamm. Microfluidic devices for angiogenesis. Mechanical and Chemical Signaling in Angiogenesis, Berlin: Springer, 2013, pp. 93–120.

    Chapter  Google Scholar 

  63. Welti, J., et al. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Investig. 123(8):3190–3200, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Young, E. W. K. Advances in microfluidic cell culture systems for studying angiogenesis. J. Lab. Autom. 18(6):427–436, 2013.

    Article  PubMed  Google Scholar 

  65. Zaman, M. H., et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103(29):10889–10894, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

None Declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shamloo.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamloo, A., Mohammadaliha, N., Heilshorn, S.C. et al. A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches. Ann Biomed Eng 44, 929–941 (2016). https://doi.org/10.1007/s10439-015-1416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1416-2

Keywords

Navigation