Skip to main content

Advertisement

Log in

Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Three-dimensional (3-D) cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell–matrix architectures and mechanical properties of the native tissues. Therefore, there are significant challenges in order to translate the technologies of traditional 3-D printing to cell printing, and ultimately achieve functional outcomes in the printed tissues. So it is essential to develop new technologies specially designed for cell printing and in-depth basic research in the bioprinted tissues, such as developing novel biomaterials specifically for cell printing applications, understanding the complex cell–matrix remodeling for the desired mechanical properties and functional outcomes, establishing proper vascular perfusion in bioprinted tissues, etc. In recent years, many exciting research progresses have been made in the 3-D cell printing technology and its application in engineering live tissue constructs. This review paper summarized the current development in 3-D cell printing technologies; focus on the outcomes of the live printed tissues and their potential applications in drug discovery and regenerative medicine. Current challenges and limitations are highlighted, and future directions of 3-D cell printing technology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bajaj, P., R. M. Schweller, A. Khademhosseini, J. L. West, and R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16:247–276, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ballyns, J. J., J. P. Gleghorn, V. Niebrzydowski, J. J. Rawlinson, H. G. Potter, S. A. Maher, T. M. Wright, and L. J. Bonassar. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. Part A 14:1195–1202, 2008.

    Article  PubMed  Google Scholar 

  3. Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Binder, K. W., W. Zhao, T. Aboushwareb, D. Dice, A. Atala, and J. J. Yoo. In situ bioprinting of the skin for burns. J. Am. Coll. Surg. 211:S76, 2010.

    Article  Google Scholar 

  6. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today 16:496–504, 2013.

    Article  CAS  Google Scholar 

  7. Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14:41–48, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Choi, H. J., J. M. Kim, E. Kwon, J.-H. Che, J.-I. Lee, S.-R. Cho, S. K. Kang, J. C. Ra, and B.-C. Kang. Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model. J. Korean Med. Sci. 26:482–491, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colosi, C., S. R. Shin, V. Manoharan, S. Massa, M. Costantini, A. Barbetta, M. R. Dokmeci, M. Dentini, and A. Khademhosseini. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28:677–684, 2016.

    Article  CAS  PubMed  Google Scholar 

  10. Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.

    Article  CAS  PubMed  Google Scholar 

  11. Cui, X., K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. D’Lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18:1304–1312, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui, X., K. Breitenkamp, M. Lotz, and D. D’Lima. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol. Bioeng. 109:2357–2368, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui, X., D. Dean, Z. M. Ruggeri, and T. Boland. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 106:963–969, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Cui, X., G. Gao, T. Yonezawa, and G. Dai. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J. Vis. Exp. 88:e51294, 2014.

    Google Scholar 

  15. Demirci, U., and G. Montesano. Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:1139–1145, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Dhariwala, B., E. Hunt, and T. Boland. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10:1316–1322, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101:1255–1264, 2013.

    Article  PubMed  CAS  Google Scholar 

  18. Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. Fedorovich, N. E., W. Schuurman, H. M. Wijnberg, H. J. Prins, P. R. van Weeren, J. Malda, J. Alblas, and W. J. Dhert. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C 18:33–44, 2012.

    Article  CAS  Google Scholar 

  20. Fedorovich, N. E., H. M. Wijnberg, W. J. Dhert, and J. Alblas. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 17:2113–2121, 2011.

    Article  PubMed  Google Scholar 

  21. Gaebel, R., N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, F. Wang, B. Chichkov, W. Li, and G. Steinhoff. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230, 2011.

    Article  CAS  PubMed  Google Scholar 

  22. Gaetani, R., P. A. Doevendans, C. H. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. Sluijter. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790, 2012.

    Article  CAS  PubMed  Google Scholar 

  23. Gaetani, R., D. A. Feyen, V. Verhage, R. Slaats, E. Messina, K. L. Christman, A. Giacomello, P. A. Doevendans, and J. P. Sluijter. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348, 2015.

    Article  CAS  PubMed  Google Scholar 

  24. Gao, Q., Y. He, J. Z. Fu, A. Liu, and L. Ma. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215, 2015.

    Article  CAS  PubMed  Google Scholar 

  25. Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Gao, G., T. Yonezawa, K. Hubbell, G. Dai, and X. Cui. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol. J. 10:1568, 2015.

    Article  CAS  PubMed  Google Scholar 

  27. Giannitelli, S. M., P. Mozetic, M. Trombetta, and A. Rainer. Combined additive manufacturing approaches in tissue engineering. Acta Biomater. 24:1–11, 2015.

    Article  CAS  PubMed  Google Scholar 

  28. Giordano, R. A., B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 8:63–75, 1996.

    Article  CAS  PubMed  Google Scholar 

  29. Guillemot, F., V. Mironov, and M. Nakamura. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2:010201, 2010.

    Article  PubMed  Google Scholar 

  30. Guillemot, F., A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Remy, S. Bellance, P. Chabassier, J. C. Fricain, and J. Amedee. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 6:2494–2500, 2010.

    Article  CAS  PubMed  Google Scholar 

  31. Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Remy, L. Bordenave, J. Amedee, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256, 2010.

    Article  CAS  PubMed  Google Scholar 

  32. Gurkan, U. A., R. El Assal, S. E. Yildiz, Y. Sung, A. J. Trachtenberg, W. P. Kuo, and U. Demirci. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharm. 11:2151–2159, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.

    Article  CAS  PubMed  Google Scholar 

  34. Hinton, T. J., Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A. R. Hudson, and A. W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1:e1500758, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hockaday, L. A., K. H. Kang, N. W. Colangelo, P. Y. Cheung, B. Duan, E. Malone, J. Wu, L. N. Girardi, L. J. Bonassar, H. Lipson, C. C. Chu, and J. T. Butcher. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.

    Article  CAS  PubMed  Google Scholar 

  37. Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.

    Article  CAS  PubMed  Google Scholar 

  38. Inzana, J. A., D. Olvera, S. M. Fuller, J. P. Kelly, O. A. Graeve, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA 101:2864–2869, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.

    Article  CAS  PubMed  Google Scholar 

  41. Keriquel, V., F. Guillemot, I. Arnault, B. Guillotin, S. Miraux, J. Amédée, J.-C. Fricain, and S. Catros. In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2:014101, 2010.

    Article  PubMed  CAS  Google Scholar 

  42. Khalil, S., and W. Sun. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131:111002, 2009.

    Article  PubMed  Google Scholar 

  43. Killat, J., K. Reimers, C. Y. Choi, S. Jahn, P. M. Vogt, and C. Radtke. Cultivation of keratinocytes and fibroblasts in a three-dimensional bovine collagen-elastin matrix (Matriderm®) and application for full thickness wound coverage in vivo. Int. J. Mol. Sci. 14:14460–14474, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Koch, L., A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. Chichkov. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109:1855–1863, 2012.

    Article  CAS  PubMed  Google Scholar 

  45. Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447, 2002.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, W., J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park, and S. S. Yoo. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.

    Article  CAS  PubMed  Google Scholar 

  47. Lee, J. W., K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752, 2011.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S. S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, V. K., A. M. Lanzi, N. Haygan, S. S. Yoo, P. A. Vincent, and G. Dai. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell. Mol. Bioeng. 7:460–472, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, W., V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, and S. S. Yoo. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105:1178–1186, 2010.

    CAS  PubMed  Google Scholar 

  51. Lee, C. H., N. W. Marion, S. Hollister, and J. J. Mao. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. Tissue Eng. Part A 15:3923–3930, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, Y. B., S. Polio, W. Lee, G. Dai, L. Menon, R. S. Carroll, and S. S. Yoo. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223:645–652, 2010.

    Article  CAS  PubMed  Google Scholar 

  53. Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, T. N. Tran, S. S. Yoo, G. Dai, and P. Karande. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C 20:473–484, 2014.

    Article  CAS  Google Scholar 

  54. Li, J., L. He, C. Zhou, Y. Zhou, Y. Y. Bai, F. Y. Lee, and J. J. Mao. 3D printing for regenerative medicine: from bench to bedside. MRS Bull. 40:145–153, 2015.

    Article  CAS  Google Scholar 

  55. Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37:623–636, 2004.

    Article  PubMed  Google Scholar 

  56. Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.

    Article  CAS  PubMed  Google Scholar 

  57. Markstedt, K., A. Mantas, I. Tournier, H. Martinez-Avila, D. Hagg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489, 2015.

    Article  CAS  PubMed  Google Scholar 

  58. Michael, S., H. Sorg, C. T. Peck, L. Koch, A. Deiwick, B. Chichkov, P. M. Vogt, and K. Reimers. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8:e57741, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D. H. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.

    Article  CAS  PubMed  Google Scholar 

  61. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  63. Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101:272–284, 2013.

    Article  PubMed  CAS  Google Scholar 

  64. Nair, K., M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee, and W. Sun. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4:1168–1177, 2009.

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura, M., A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11:1658–1666, 2005.

    Article  CAS  PubMed  Google Scholar 

  66. Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ovsianikov, A., M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, and B. Chichkov. Laser printing of cells into 3D scaffolds. Biofabrication 2:014104, 2010.

    Article  CAS  PubMed  Google Scholar 

  68. Ozbolat, I. T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33:395–400, 2015.

    Article  CAS  PubMed  Google Scholar 

  69. Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18:100501, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 4:160sr164, 2012.

    Article  CAS  Google Scholar 

  71. Pati, F., D. H. Ha, J. Jang, H. H. Han, J. W. Rhie, and D. W. Cho. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175, 2015.

    Article  CAS  PubMed  Google Scholar 

  72. Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Peltola, S. M., F. P. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.

    Article  CAS  PubMed  Google Scholar 

  74. Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715, 2004.

    Article  CAS  PubMed  Google Scholar 

  75. Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saunders, R. E., J. E. Gough, and B. Derby. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203, 2008.

    Article  CAS  PubMed  Google Scholar 

  77. Schiele, N. R., D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, and D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication 2:032001, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Seol, Y. J., H. W. Kang, S. J. Lee, A. Atala, and J. J. Yoo. Bioprinting technology and its applications. Eur. J. Cardiothorac. Surg. 46:342–348, 2014.

    Article  PubMed  Google Scholar 

  79. Singh, M., H. M. Haverinen, P. Dhagat, and G. E. Jabbour. Inkjet printing-process and its applications. Adv. Mater. 22:673–685, 2010.

    Article  CAS  PubMed  Google Scholar 

  80. Skardal, A., and A. Atala. Biomaterials for integration with 3-D bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.

    Article  PubMed  Google Scholar 

  81. Skardal, A., D. Mack, E. Kapetanovic, A. Atala, J. D. Jackson, J. Yoo, and S. Soker. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1:792, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16:2675–2685, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Skardal, A., J. Zhang, and G. D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181, 2010.

    Article  CAS  PubMed  Google Scholar 

  84. Skoog, S. A., P. L. Goering, and R. J. Narayan. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25:845–856, 2014.

    Article  CAS  PubMed  Google Scholar 

  85. Strobel, L. A., S. N. Rath, A. K. Maier, J. P. Beier, A. Arkudas, P. Greil, R. E. Horch, and U. Kneser. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J. Tissue Eng. Regen. Med. 8:176–185, 2014.

    Article  CAS  PubMed  Google Scholar 

  86. Sun, W., A. Darling, B. Starly, and J. Nam. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39:29–47, 2004.

    Article  CAS  PubMed  Google Scholar 

  87. Tao, X., W. B. Kyle, Z. A. Mohammad, D. Dennis, Z. Weixin, J. Y. James, and A. Anthony. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001, 2013.

    Article  CAS  Google Scholar 

  88. Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 7:631–641, 2013.

    Article  CAS  PubMed  Google Scholar 

  89. Tasoglu, S., and U. Demirci. Bioprinting for stem cell research. Trends Biotechnol. 31:10–19, 2013.

    Article  CAS  PubMed  Google Scholar 

  90. Temple, J. P., D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, X. Jia, and W. L. Grayson. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A 102:4317–4325, 2014.

    PubMed  Google Scholar 

  91. Tsang, V. L., A. A. Chen, L. M. Cho, K. D. Jadin, R. L. Sah, S. DeLong, J. L. West, and S. N. Bhatia. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21:790–801, 2007.

    Article  CAS  Google Scholar 

  92. Weinand, C., R. Gupta, E. Weinberg, I. Madisch, C. M. Neville, J. B. Jupiter, and J. P. Vacanti. Toward regenerating a human thumb in situ. Tissue Eng. Part A 15:2605–2615, 2009.

    Article  CAS  PubMed  Google Scholar 

  93. Wilson, Jr, W. C., and T. Boland. Cell and organ printing 1: protein and cell printers. Anat. Rec A 272:491–496, 2003.

    Article  Google Scholar 

  94. Wu, P. K., and B. R. Ringeisen. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2:014111, 2010.

    Article  CAS  PubMed  Google Scholar 

  95. Wust, S., M. E. Godla, R. Muller, and S. Hofmann. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10:630–640, 2014.

    Article  CAS  PubMed  Google Scholar 

  96. Xu, T., C. A. Gregory, P. Molnar, X. Cui, S. Jalota, S. B. Bhaduri, and T. Boland. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588, 2006.

    CAS  PubMed  Google Scholar 

  97. Xu, T., J. Jin, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.

    Article  PubMed  CAS  Google Scholar 

  98. Yang, S., K. F. Leong, Z. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.

    Article  CAS  PubMed  Google Scholar 

  99. Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:643–652, 2004.

    Article  CAS  PubMed  Google Scholar 

  100. Yu, Y., Y. Zhang, and I. T. Ozbolat. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng. 136:061013, 2014.

    Article  Google Scholar 

  101. Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33:5325–5332, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao, Y., R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, S. Cheng, and W. Sun. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001, 2014.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from NSF CBET-1263455, NSF Career-1350240, NIH R01HL118245 and American Heart Association 12SDG12050083.

Conflict of interest

Both authors declare no conflict of interest associated with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohao Dai.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, V.K., Dai, G. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Ann Biomed Eng 45, 115–131 (2017). https://doi.org/10.1007/s10439-016-1613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1613-7

Keywords

Navigation