Skip to main content
Log in

Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve

  • The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, we explore how blood-material interactions and hemodynamics are impacted by rendering a clinical quality 25 mm St. Jude Medical Bileaflet mechanical heart valve (BMHV) superhydrophobic (SH) with the aim of reducing thrombo-embolic complications associated with BMHVs. Basic cell adhesion is evaluated to assess blood-material interactions, while hemodynamic performance is analyzed with and without the SH coating. Results show that a SH coating with a receding contact angle (CA) of 160° strikingly eliminates platelet and leukocyte adhesion to the surface. Alternatively, many platelets attach to and activate on pyrolytic carbon (receding CA = 47), the base material for BMHVs. We further show that the performance index increases by 2.5% for coated valve relative to an uncoated valve, with a maximum possible improved performance of 5%. Both valves exhibit instantaneous shear stress below 10 N/m2 and Reynolds Shear Stress below 100 N/m2. Therefore, a SH BMHV has the potential to relax the requirement for antiplatelet and anticoagulant drug regimens typically required for patients receiving MHVs by minimizing blood-material interactions, while having a minimal impact on hemodynamics. We show for the first time that SH-coated surfaces may be a promising direction to minimize thrombotic complications in complex devices such as heart valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bark, Jr, D. L., and D. N. Ku. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43:2970–2977, 2010.

    Article  PubMed  Google Scholar 

  2. Bark, Jr, D. L., and D. N. Ku. Platelet Transport rates and binding kinetics at high shear over a thrombus. Biophys. J. 105:502–511, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bark, Jr, D. L., A. N. Para, and D. N. Ku. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109:2642–2650, 2012.

    Article  CAS  PubMed  Google Scholar 

  4. Baudet, E., C. Oca, X. Roques, M. Laborde, A. Hafez, M. Collot, and I. Ghidoni. A 5 1/2 year experience with the St. Jude Medical cardiac valve prosthesis. Early and late results of 737 valve replacements in 671 patients. J. Thorac. Cardiovasc. Surg. 90:137–144, 1985.

    CAS  PubMed  Google Scholar 

  5. Baudet, E. M., V. Puel, J. T. McBride, J.-P. Grimaud, F. Roques, F. Clerc, X. Roques, and N. Laborde. Long-term results of valve replacement with the St. Jude Medical prosthesis. J. Thorac. Cardiovasc. Surg. 109:858–870, 1995.

    Article  CAS  PubMed  Google Scholar 

  6. Bellofiore, A., and N. J. Quinlan. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann. Biomed. Eng. 39:2417–2429, 2011.

    Article  PubMed  Google Scholar 

  7. Bezuidenhout, D. and P. Zilla. Flexible leaflet polymeric heart valves. In: Cardiovascular and Cardiac Therapeutic Devices. Berlin: Springer, 2014, pp. 93–129.

  8. Bluestein, D., L. Niu, R. Schoephoerster, and M. Dewanjee. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J. Biomech. Eng. 118:280–286, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25:344–356, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Brash J. L. and T. A. Horbett. I Proteins at interfaces. Physicochemicel. 1995.

  11. Brown, J. M., S. M. O’Brien, C. Wu, J. A. H. Sikora, B. P. Griffith, and J. S. Gammie. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 137:82–90, 2009.

    Article  PubMed  Google Scholar 

  12. Bruneau, C.-H., and I. Mortazavi. Numerical modelling and passive flow control using porous media. Comput. Fluids 37:488–498, 2008.

    Article  CAS  Google Scholar 

  13. Cannegieter, S., F. Rosendaal, and E. Briet. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89:635–641, 1994.

    Article  CAS  PubMed  Google Scholar 

  14. Cassie, A., and S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc. 40:546–551, 1944.

    Article  CAS  Google Scholar 

  15. Chang, B., S. Lim, D. Kim, J. Seo, S. Cho, W. Shim, N. Chung, S. Kim, and B. Cho. Long-term results with St. Jude Medical and CarboMedics prosthetic heart valves. J. Heart Valve Dis. 10:185–194, 2001; (discussion195).

    CAS  PubMed  Google Scholar 

  16. Chiang, Y. P., J. Chikwe, A. J. Moskowitz, S. Itagaki, D. H. Adams, and N. N. Egorova. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA 312:1323–1329, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. Choi, C.-H., U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 18:087105, 2006.

    Article  Google Scholar 

  18. Conn, G., A. G. Kidane, G. Punshon, R. Y. Kannan, G. Hamilton, and A. M. Seifalian. Is there an alternative to systemic anticoagulation, as related to interventional biomedical devices? Expert Rev. Med. Devices 3:245–261, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Constantinides, P. Plaque fissures in human coronary thrombosis. J. Atheroscler. Res. 6:1–17, 1966.

    Article  Google Scholar 

  20. Crawford S. T. Pathology of ischaemic heart disease. 1977.

  21. Crouzet, C., C. Decker, and J. Marchal. Characterization of primary reactions of oxidative-degradation in course of autoxidation of poly (oxyethlene) S at 25degreesc-study in aqueous-solution with initiation by irradiation of solvent. 8. Kinetic studies at Ph between 1 and 1. Makromol. Chem. 177:145–157, 1976.

    Article  CAS  Google Scholar 

  22. Daebritz, S. H., B. Fausten, B. Hermanns, A. Franke, J. Schroeder, J. Groetzner, R. Autschbach, B. J. Messmer, and J. S. Sachweh. New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surg. Forum 7:E525–E532, 2004.

    Article  PubMed  Google Scholar 

  23. Damodaran, V. B., V. Leszczak, K. A. Wold, S. M. Lantvit, K. C. Popat, and M. M. Reynolds. Antithrombogenic properties of a nitric oxide-releasing dextran derivative: evaluation of platelet activation and whole blood clotting kinetics. RSC Adv. 3:24406–24414, 2013.

    Article  CAS  Google Scholar 

  24. Daniello, R. J., N. E. Waterhouse, and J. P. Rothstein. Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21:085103, 2009.

    Article  Google Scholar 

  25. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105, 2007.

    Article  Google Scholar 

  26. Dasi, L. P., D. W. Murphy, A. Glezer, and A. P. Yoganathan. Passive flow control of bileaflet mechanical heart valve leakage flow. J. Biomech. 41:1166–1173, 2008.

    Article  PubMed  Google Scholar 

  27. De Scheerder, I., K. Wang, K. Wilczek, D. Meuleman, R. Van Amsterdam, G. Vogel, J. Piessens, and F. Van de Werf. Experimental study of thrombogenicity and foreign body reaction induced by heparin-coated coronary stents. Circulation 95:1549–1553, 1997.

    Article  PubMed  Google Scholar 

  28. Dooley, P. N., and N. J. Quinlan. Effect of Eddy length scale on mechanical loading of blood cells in turbulent flow. Ann. Biomed. Eng. 37:2449–2458, 2009.

    Article  PubMed  Google Scholar 

  29. Dussan, V. E., and R. T.-P. Chow. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137:1–29, 1983.

    Article  Google Scholar 

  30. Fallon, A. M., N. Shah, U. M. Marzec, J. N. Warnock, A. P. Yoganathan, and S. R. Hanson. Flow and thrombosis at orifices simulating mechanical heart valve leakage regions. J. Biomech. Eng. 128:30–39, 2006.

    Article  PubMed  Google Scholar 

  31. Forleo, M. Application of passive flow control to mitigate the thromboembolic potential of bileaflet mechanical heart valves: an in-vitro study. Mechanical Engineering, Fort Collins: Colorado State University, 2014, p. 193.

    Google Scholar 

  32. Forleo M. and L. Dasi. Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum regurgitant jet in a bileaflet mechanical heart valve. Ann. Biomed. Eng. 1–13, 2013.

  33. Gammie, J. S., S. Sheng, B. P. Griffith, E. D. Peterson, J. S. Rankin, S. M. O’Brien, and J. M. Brown. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Database. Ann. Thorac. Surg. 87:1431–1439, 2009.

    Article  PubMed  Google Scholar 

  34. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36:276–297, 2008.

    Article  PubMed  Google Scholar 

  35. Gerring, E., B. Bellhouse, F. Bellhouse, and W. Haworth. Long term animal trials of the Oxford aortic/pulmonary valve prosthesis without anticoagulants. ASAIO J. 20:703–707, 1974.

    Google Scholar 

  36. Giersiepen, M., L. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses–in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13:300–306, 1990.

    CAS  PubMed  Google Scholar 

  37. Godek, M., R. Michel, L. Chamberlain, D. Castner, and D. Grainger. Adsorbed serum albumin is permissive to macrophage attachment to perfluorocarbon polymer surfaces in culture. J. Biomed. Mater. Res. A 88:503–519, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hellums, J. D. 1993 Whitaker Lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, P. Y., and J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation. Biophys. J. 65:344–353, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ibrahim, M., H. O’Kane, J. Cleland, D. Gladstone, M. Sarsam, and C. Patterson. The St. Jude Medical prosthesis. A thirteen-year experience. J. Thorac. Cardiovasc. Surg. 108:221–230, 1994.

    CAS  PubMed  Google Scholar 

  41. Jaffer, I., J. Fredenburgh, J. Hirsh, and J. Weitz. Medical device-induced thrombosis: what causes it and how can we prevent it? J. Thromb. Haemost. 13:S72–S81, 2015.

    Article  PubMed  Google Scholar 

  42. Jordan, S. W., C. A. Haller, R. E. Sallach, R. P. Apkarian, S. R. Hanson, and E. L. Chaikof. The effect of a recombinant elastin-mimetic coating of an ePTFE prosthesis on acute thrombogenicity in a baboon arteriovenous shunt. Biomaterials 28:1191–1197, 2007.

    Article  CAS  PubMed  Google Scholar 

  43. Kaneko, T., S. Aranki, Q. Javed, S. McGurk, P. Shekar, M. Davidson, and L. Cohn. Mechanical versus bioprosthetic mitral valve replacement in patients <65 years old. J. Thorac. Cardiovasc. Surg. 147:117–126, 2014.

    Article  PubMed  Google Scholar 

  44. Kang, I.-K., B. K. Kwon, J. H. Lee, and H. B. Lee. Immobilization of proteins on poly (methyl methacrylate) films. Biomaterials 14:787–792, 1993.

    Article  CAS  PubMed  Google Scholar 

  45. Khorasani, M., and H. Mirzadeh. In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J. Appl. Polym. Sci. 91:2042–2047, 2004.

    Article  CAS  Google Scholar 

  46. Kota, A. K., W. Choi, and A. Tuteja. Superomniphobic surfaces: design and durability. MRS Bull. 38:383–390, 2013.

    Article  CAS  Google Scholar 

  47. Kota, A. K., J. M. Mabry, and A. Tuteja. Superoleophobic surfaces: design criteria and recent studies. Surf. Innov. 1:71–83, 2013.

    Article  CAS  Google Scholar 

  48. Kota, A. K., and A. Tuteja. High-efficiency, ultrafast separation of emulsified oil-water mixtures. NPG Asia Mater 5:e58, 2013.

    Article  CAS  Google Scholar 

  49. Kutay, V., T. Noyan, S. Ozcan, Y. Melek, H. Ekim, and C. Yakut. Biocompatibility of heparin-coated cardiopulmonary bypass circuits in coronary patients with left ventricular dysfunction is superior to pmea-coated circuits. J. Card. Surg. 21:572–577, 2006.

    Article  PubMed  Google Scholar 

  50. Lee, C., and C.-J. C. Kim. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25:12812–12818, 2009.

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J. H., H. B. Lee, and J. D. Andrade. Blood compatibility of polyethylene oxide surfaces. Prog. Polym. Sci. 20:1043–1079, 1995.

    Article  CAS  Google Scholar 

  52. Leitão, A. F., S. Gupta, J. P. Silva, I. Reviakine, and M. Gama. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf. B 111:493–502, 2013.

    Article  Google Scholar 

  53. Leslie, D. C., A. Waterhouse, J. B. Berthet, T. M. Valentin, A. L. Watters, A. Jain, P. Kim, B. D. Hatton, A. Nedder, and K. Donovan. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 32:1134–1140, 2014.

    Article  CAS  PubMed  Google Scholar 

  54. Lin, J., F. Howard, and G. Selby. Turbulent flow separation control through passive techniques.1989.

  55. Lu, P., H. Lai, and J. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34:1361–1364, 2001.

    Article  CAS  PubMed  Google Scholar 

  56. Martell, M. B., J. B. Perot, and J. P. Rothstein. Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 620:31–41, 2009.

    Article  Google Scholar 

  57. Michael, K. E., V. N. Vernekar, B. G. Keselowsky, J. C. Meredith, R. A. Latour, and A. J. García. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19:8033–8040, 2003.

    Article  CAS  Google Scholar 

  58. Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. Nolasco, and J. D. Hellums. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 71:1366–1374, 1988.

    CAS  PubMed  Google Scholar 

  59. Morshed, K. N., D. Bark, Jr, M. Forleo, and L. P. Dasi. Theory to predict shear stress on cells in turbulent blood flow. PLOS ONE 9:e105357, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mozaffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. de Ferranti, J.-P. Després, H. J. Fullerton, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, S. Liu, R. H. Mackey, D. B. Matchar, D. K. McGuire, E. R. Mohler, C. S. Moy, P. Muntner, M. E. Mussolino, K. Nasir, R. W. Neumar, G. Nichol, L. Palaniappan, D. K. Pandey, M. J. Reeves, C. J. Rodriguez, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, J. Z. Willey, D. Woo, R. W. Yeh, and M. B. Turner. heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation. 2014

  61. Nishino, T., M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda. The lowest surface free energy based on-CF3 alignment. Langmuir 15:4321–4323, 1999.

    Article  CAS  Google Scholar 

  62. Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J 54:64, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ollivier, V., V. Syvannarath, A. Gros, A. Butt, S. Loyau, M. Jandrot-Perrus, and B. Ho-Tin-Noé. Collagen can selectively trigger a platelet secretory phenotype via glycoprotein VI. PloS one 9:e104712, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ou, J., B. Perot, and J. P. Rothstein. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16:4635–4643, 2004.

    Article  CAS  Google Scholar 

  65. Ou, J., and J. P. Rothstein. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17:103606, 2005.

    Article  Google Scholar 

  66. Prawel, D., H. Dean, M. Forleo, N. Lewis, J. Gangwish, K. Popat, L. Dasi, and S. James. Hemocompatibility and hemodynamics of novel hyaluronan–polyethylene materials for flexible heart valve leaflets. Cardiovasc. Eng. Technol. 1–12, 2013.

  67. Quéré, D. Non-sticking drops. Rep. Prog. Phys. 68:2495, 2005.

    Article  Google Scholar 

  68. Reser, D., B. Seifert, M. Klein, T. Dreizler, P. Hasenclever, V. Falk, and C. Starck. Retrospective analysis of outcome data with regards to the use of Phisio(R)-, Bioline(R)- or Softline(R)-coated cardiopulmonary bypass circuits in cardiac surgery. Perfusion 27:530–534, 2012.

    Article  CAS  PubMed  Google Scholar 

  69. Roach, P., D. Farrar, and C. C. Perry. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127:8168–8173, 2005.

    Article  CAS  PubMed  Google Scholar 

  70. Rothstein, J. P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42:89–109, 2010.

    Article  Google Scholar 

  71. Sade, R., J. Ballenger, A. Hohn, J. Arrants, D. Riopel, and A. Taylor. Cardiac valve replacement in children: comparison of tissue with mechanical prostheses. J. Thorac. Cardiovasc. Surg. 78:123–127, 1979.

    CAS  PubMed  Google Scholar 

  72. Sallam, A. M., and N. Hwang. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797, 1983.

    Google Scholar 

  73. Serruys, P. W., H. Emanuelsson, W. Van Der Giessen, A. C. Lunn, F. Kiemeney, C. Macaya, W. Rutsch, G. Heyndrickx, H. Suryapranata, and V. Legrand. Heparin-coated palmaz-schatz stents in human coronary arteries early outcome of the benestent-II pilot study. Circulation 93:412–422, 1996.

    Article  CAS  PubMed  Google Scholar 

  74. Shepherd, G., P. Mohorn, K. Yacoub, and D. W. May. Adverse drug reaction deaths reported in United States vital statistics, 1999–2006. Ann. Pharmacother. 46:169–175, 2012.

    Article  PubMed  Google Scholar 

  75. Smith, B. S., S. Yoriya, L. Grissom, C. A. Grimes, and K. C. Popat. Hemocompatibility of titania nanotube arrays. J. Biomed. Mater. Res. A 95:350–360, 2010.

    Article  PubMed  Google Scholar 

  76. Sotiropoulos, F. Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48:259–283, 2015.

    Article  Google Scholar 

  77. Srinivasan, S., W. Choi, K.-C. Park, S. S. Chhatre, R. E. Cohen, and G. H. McKinley. Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter 9:5691–5702, 2013.

    Article  CAS  Google Scholar 

  78. Stassano, P., L. Di Tommaso, M. Monaco, F. Iorio, P. Pepino, N. Spampinato, and C. Vosa. Aortic valve replacement: a prospective randomized evaluation of mechanical versus biological valves in patients ages 55 to 70 years. J. Am. Coll. Cardiol. 54:1862–1868, 2009.

    Article  PubMed  Google Scholar 

  79. Sun, J. C., M. J. Davidson, A. Lamy, and J. W. Eikelboom. Antithrombotic management of patients with prosthetic heart valves: current evidence and future trends. Lancet 374:565–576, 2009.

    Article  PubMed  Google Scholar 

  80. Sun, T., H. Tan, D. Han, Q. Fu, and L. Jiang. No platelet can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 1:959–963, 2005.

    Article  CAS  PubMed  Google Scholar 

  81. Vongpatanasin, W., L. D. Hillis, and R. A. Lange. Prosthetic heart valves. N. Engl. J. Med. 335:407–416, 1996.

    Article  CAS  PubMed  Google Scholar 

  82. Vrolix, M. C., V. M. Legrand, J. H. Reiber, G. Grollier, M. J. Schalij, P. Brunel, L. Martinez-Elbal, M. Gomez-Recio, F. W. Bär, and M. E. Bertrand. Heparin-coated Wiktor stents in human coronary arteries (MENTOR trial). Am. J. Cardiol. 86:385–389, 2000.

    Article  CAS  PubMed  Google Scholar 

  83. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Indus. Eng. Chem. 28:988–994, 1936.

    Article  CAS  Google Scholar 

  84. Wheatley, D., G. Bernacca, M. Tolland, B. O’Connor, J. Fisher, and D. Williams. Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs 24:95–101, 2001.

    CAS  PubMed  Google Scholar 

  85. Wisman, C., W. Pierce, J. Donachy, W. Pae, J. Myers, and G. Prophet. A polyurethane trileaflet cardiac valve prosthesis: in vitro and in vivo studies. ASAIO J. 28:164–168, 1982.

    CAS  Google Scholar 

  86. Yacoub, M., M. Halim, R. Radley-Smith, R. McKay, A. Nijveld, and M. Towers. Surgical treatment of mitral regurgitation caused by floppy valves: repair versus replacement. Circulation 64:II210–216, 1981.

    CAS  PubMed  Google Scholar 

  87. Yoganathan, A. P., Z. He, and S. C. Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.

    Article  CAS  PubMed  Google Scholar 

  88. Yoganathan A. P., J. D. Lemmon and J. T. Ellis. Heart Valve Dynamics. In: Biomedical Engineering Fundamentals. CRC Press, Boca Raton, 2006, pp. 55-51-55-16

  89. Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95:65–87, 1805.

    Article  Google Scholar 

  90. Zhang, J.-N., A. L. Bergeron, Q. Yu, C. Sun, L. V. McIntire, J. A. López, and J.-F. Dong. Platelet aggregation and activation under complex patterns of shear stress. Thromb. Haemost. 88:817–821, 2002.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from National Institutes of Health (NIH) under Award Number R01HL119824 and F32HL129730. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi P. Dasi.

Additional information

Associate Editor Ellen Kuhl oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bark, D.L., Vahabi, H., Bui, H. et al. Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve. Ann Biomed Eng 45, 452–463 (2017). https://doi.org/10.1007/s10439-016-1618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1618-2

Keywords

Navigation