Skip to main content
Log in

A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this survey paper, we shall establish sufficient conditions for the existence and uniqueness of solutions for various classes of initial and boundary value problem for fractional differential equations and inclusions involving the Caputo fractional derivative. The both cases of convex and nonconvex valued right hand side are considered. The topological structure of the set of solutions is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adomian, G., Adomian, G.E.: Cellular systems and aging models. Comput. Math. Appl. 11, 283–291 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, R.P., Belmekki, M., Benchohra, M.: Existence results for semilinear functional differential inclusions involving Riemann-Liouville fractional derivative. Dyn. Continuos Discrete Impuls. Syst. (2008, to appear)

  3. Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative (2008, submitted)

  4. Agarwal, R.P., Benchohra, M., Hamani, S.: Boundary value problems for differential inclusions with fractional order. Adv. Stud. Contemp. Math. 16(2), 181–196 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Agarwal, R.P., Benchohra, M., Hamani, S.: Boundary value problems for fractional differential equations. Georgian Math. J. (2008, to appear)

  6. Agarwal, R.P., Benchohra, M., Slimani, B.A.: Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys. 44, 1–21 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Ahmad, B., Nieto, J.J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. (2008). doi:10.1016/j.na.2007.09.018

    MathSciNet  Google Scholar 

  8. Ait Dads, E., Benchohra, M., Hamani, S.: Impulsive fractional differential inclusions involving the Caputo Factional derivative. Fract. Calc. Appl. Anal. (2008, to appear)

  9. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    MATH  Google Scholar 

  10. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  11. Babakhani, A., Daftardar-Gejji, V.: Existence of positive solutions for N-term non-autonomous fractional differential equations. Positivity 9(2), 193–206 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Babakhani, A., Daftardar-Gejji, V.: Existence of positive solutions for multi-term non-autonomous fractional differential equations with polynomial coefficients. Electron. J. Differ. Equ. 129, 12 (2006)

    MathSciNet  Google Scholar 

  13. Bainov, D.D., Simeonov, P.S.: Systems with Impulsive Effect. Horwood, Chichester (1989)

    Google Scholar 

  14. Belarbi, A., Benchohra, M., Dhage, B.C.: Existence theory for perturbed boundary value problems with integral boundary conditions. Georgian Math. J. 13(2), 215–228 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Belarbi, A., Benchohra, M., Ouahab, A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Appl. Anal. 85, 1459–1470 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Belarbi, A., Benchohra, M., Hamani, S., Ntouyas, S.K.: Perturbed functional differential equations with fractional order. Commun. Appl. Anal. 11(3–4), 429–440 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Belmekki, M., Benchohra, M.: Existence results for Fractional order semilinear functional differential equations. Proc. A. Razmadze Math. Inst. 146, 9–20 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Belmekki, M., Benchohra, M., Gorniewicz, L.: Semilinear functional differential equations with fractional order and infinite delay. Fixed Point Theory 9(2), 423–439 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Methods Nonlinear Anal. (2008, to appear)

  20. Benchohra, M., Hamani, S.: Boundary value problems for differential inclusions with fractional order. Discuss. Math. Differ. Incl. Control Optim. (2008, to appear)

  21. Benchohra, M., Slimani, B.A.: Impulsive fractional differential equations (2008, submitted)

  22. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi, New York (2006)

    MATH  Google Scholar 

  23. Benchohra, M., Hamani, S., Henderson, J.: Functional differential inclusions with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 15, 1–13 (2007)

    MathSciNet  Google Scholar 

  24. Benchohra, M., Hamani, S., Nieto, J.J.: The method of upper and lower solutions for second order differential inclusions with integral boundary conditions. Rocky Mountain J. Math. (2008, to appear)

  25. Benchohra, M., Hamani, S., Nieto, J.J., Slimani, B.A.: Existence results for differential inclusions with fractional order and impulses (2008, submitted)

  26. Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems with nonlinear fractional differential equations. Appl. Anal. 87(7), 851–863 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Benchohra, M., Hamani, S., Ntouyas, S.K.: boundary value problems for differential equations with fractional order. Surv. Math. Appl. 3, 1–12 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338(2), 1340–1350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional functional differential inclusions with infinite delay and application to control theory. Fract. Calc. Appl. Anal. 11(1), 35–56 (2008)

    MATH  MathSciNet  Google Scholar 

  30. Blayneh, K.W.: Analysis of age structured host-parasitoid model. Far East J. Dyn. Syst. 4, 125–145 (2002)

    MATH  MathSciNet  Google Scholar 

  31. Braverman, E., Zhukovskiy, S.: The problem of a lazy tester, or exponential dichotomy for impulsive differential equations revisited. Nonlinear Anal.: Hybrid Syst. 2, 971–979 (2008)

    Article  MathSciNet  Google Scholar 

  32. Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Stud. Math. 90, 70–85 (1988)

    MathSciNet  Google Scholar 

  33. Byszewski, L.: Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Byszewski, L.: Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. In: Selected Problems of Mathematics. 50th Anniv. Cracow Univ. Technol. Anniv. Issue, vol. 6, pp. 25–33. Cracow Univ. Technol., Krakow (1995)

    Google Scholar 

  35. Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40, 11–19 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  36. Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii-Schaefer type. Math. Nachr. 189, 23–31 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    MATH  Google Scholar 

  38. Chang, Y.-K., Nieto, J.J.: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. (2008, in press)

  39. Covitz, H., Nadler, S.B. Jr.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5–11 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  40. Daftardar-Gejji, V., Jafari, H.: Boundary value problems for fractional diffusion-wave equation. Aust. J. Math. Anal. Appl. 3(1), 8 (2006). Art. 16 (electronic)

    MathSciNet  Google Scholar 

  41. Daftardar-Gejji, V., Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328(2), 1026–1033 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Dai, B., Su, H., Hu, D.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal. (2008, in press)

  43. Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin (1992)

    MATH  Google Scholar 

  44. Delbosco, D., Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204, 609–625 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  45. Dhage, B.C.: Multivalued mappings and fixed points II. Tamkang J. Math. 37(1), 27–46 (2006)

    MATH  MathSciNet  Google Scholar 

  46. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)

    Google Scholar 

  48. Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  49. El-Sayed, A.M.A.: Fractional order evolution equations. J. Fract. Calc. 7, 89–100 (1995)

    MATH  MathSciNet  Google Scholar 

  50. El-Sayed, A.M.A.: Fractional order diffusion-wave equations. Int. J. Theor. Phys. 35, 311–322 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  51. El-Sayed, A.M.A.: Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal. 33, 181–186 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  52. Frigon, M., Granas, A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. Sci. Paris, Ser. I 310, 819–822 (1990)

    MATH  MathSciNet  Google Scholar 

  53. Fryszkowski, A.: Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications, vol. 2. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  54. Furati, K.M., Tatar, N.-E.: An existence result for a nonlocal fractional differential problem. J. Fract. Calc. 26, 43–51 (2004)

    MATH  MathSciNet  Google Scholar 

  55. Furati, K.M., Tatar, N.-E.: Behavior of solutions for a weighted Cauchy-type fractional differential problem. J. Fract. Calc. 28, 23–42 (2005)

    MATH  MathSciNet  Google Scholar 

  56. Gaul, L., Klein, P., Kempfle, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  Google Scholar 

  57. Glockle, W.G., Nonnenmacher, T.F.: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  58. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    MATH  Google Scholar 

  59. Guo, H., Chen, L.: Time-limited pest control of a Lotka-Volterra model with impulsive harvest. Nonlinear Anal.: Real World Appl. (2008). doi:10.1016/j.nonrwa.2007.11.007

    MathSciNet  Google Scholar 

  60. Hernandez, E., Henriquez, H.R., McKibben, M.A.: Existence results for abstract impulsive second-order neutral functional differential equations. Nonlinear Anal. (2008). doi:10.1016/j.na.2008.03.062

    Google Scholar 

  61. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45(5), 765–772 (2006)

    Article  Google Scholar 

  62. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  63. Hu, Sh., Papageorgiou, N.: Handbook of Multivalued Analysis, Theory, vol. I. Kluwer, Dordrecht (1997)

    Google Scholar 

  64. Jiang, G., Lu, Q., Qian, L.: Chaos and its control in an impulsive differential system. Chaos, Solitons Fractals 34, 1135–1147 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  65. Jiang, G., Lu, Q., Qian, L.: Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos, Solitons Fractals 31, 448–461 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 3, 11 (2007)

    Google Scholar 

  67. Kilbas, A.A., Marzan, S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 41, 84–89 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  68. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  69. Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series, vol. 301. Longman, Harlow (1994). Copublished in the United States with Wiley, New York (1994)

    MATH  Google Scholar 

  70. Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht (1991)

    Google Scholar 

  71. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  72. Luo, Z., Nieto, J.J.: New results for the periodic boundary value problem for impulsive integro-differential equations. Nonlinear Anal. (2008). doi:10.1016/j.na.2008.03.004

    Google Scholar 

  73. Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, Wien (1997)

    Google Scholar 

  74. Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  75. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  76. Mohamad, S., Gopalsamy, K., Akca, H.: Exponential stability of artificial neural networks with distributed delays and large impulses. Nonlinear Anal.: Real World Appl. 9, 872–888 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  77. Momani, S.M., Hadid, S.B.: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24, 37–44 (2003)

    MATH  MathSciNet  Google Scholar 

  78. Momani, S.M., Hadid, S.B., Alawenh, Z.M.: Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004, 697–701 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  79. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  80. Ouahab, A.: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. 69(11), 3877–3896 (2007).

    MathSciNet  Google Scholar 

  81. Pei, Y., Li, C., Chen, L., Wang, C.: Complex dynamics of one-prey multi-predator system with defensive ability of prey and impulsive biological control on predators. Adv. Complex Syst. 8, 483–495 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  82. Podlubny, I.: Fractional Differential Equation. Academic Press, San Diego (1999)

    Google Scholar 

  83. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal. 5, 367–386 (2002)

    MATH  MathSciNet  Google Scholar 

  84. Podlubny, I., Petraš, I., Vinagre, B.M., O’Leary, P., Dorčak, L.: Analogue realizations of fractional-order controllers. Fractional order calculus and its applications. Nonlinear Dyn. 29, 281–296 (2002)

    Article  MATH  Google Scholar 

  85. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach, Yverdon (1993)

    MATH  Google Scholar 

  86. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  87. Shen, J.H., Li, J.L.: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal.: Real World (2007). doi:110.1016/j.nonrwa.2007.08.026

    Google Scholar 

  88. Smart, D.R.: Fixed Point Theorems, vol. 66. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  89. Wang, W.B., Shen, J.H., Nieto, J.J.: Permanence periodic solution of predator prey system with Holling type functional response and impulses. Discrete Dyn. Nat. Soc. (2007). doi:10.1155/2007/81756

    MathSciNet  Google Scholar 

  90. Wei, C., Chen, L.: A delayed epidemic model with pulse vaccination. Discrete Dyn. Nat. Soc. (2008). Article ID 746951, 13 pages

  91. Xia, Y.: Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance. Nonlinear Anal.: Real World Appl. 8, 204–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  92. Yan, J., Zhao, A., Nieto, J.J.: Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems. Math. Comput. Model. 40, 509–518 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  93. Yu, C., Gao, G.: Existence of fractional differential equations. J. Math. Anal. Appl. 310, 26–29 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  94. Zeng, G.Z., Wang, F.Y., Nieto, J.J.: Complexity of delayed predator-prey model with impulsive harvest and Holling type-II functional response. Adv. Complex Syst. 11, 77–97 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  95. Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 36, 1–12 (2006)

    Article  Google Scholar 

  96. Zhang, H., Chen, L.S., Nieto, J.J.: A delayed epidemic model with stage structure and pulses for management strategy. Nonlinear Anal.: Real World (2007). doi:10.1016/j.nonrwa.2007.05.004

    Google Scholar 

  97. Zhang, H., Xu, W., Chen, L.: A impulsive infective transmission SI model for pest control. Math. Methods Appl. Sci. 30, 1169–1184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  98. Zhou, J., Xiang, L., Liu, Z.: Synchronization in complex delayed dynamical networks with impulsive effects. Phys. A: Stat. Mech. Appl. 384, 684–692 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, R.P., Benchohra, M. & Hamani, S. A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions. Acta Appl Math 109, 973–1033 (2010). https://doi.org/10.1007/s10440-008-9356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9356-6

Keywords

Mathematics Subject Classification (2000)

Navigation