Skip to main content
Log in

A Study of Linear Waves Based on Extended Thermodynamics for Rarefied Polyatomic Gases

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We study the dispersion relation for sound in rarefied polyatomic gases basing on the recently developed theory of extended thermodynamics (ET) for both dense and rarefied polyatomic gases. For hydrogen and deuterium gases in a wide temperature range where the rotational and vibrational modes in a molecule play a role, we compare the dispersion relations with those obtained in experiments and by the classical Navier–Stokes Fourier theory. From the comparison with experiments, we estimate the bulk viscosity and evaluate its temperature dependence. We study the characteristics of attenuation in a gas which has a larger relaxation time related to the dynamic pressure than the other relaxation times related to the shear stress and the heat flux by adopting the ET theory with 6 fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24, 271–292 (2011)

    Article  Google Scholar 

  2. Arima, T., Sugiyama, M.: Characteristic features of extended thermodynamics of dense gases. Atti Accad. Pelorit. Pericol. 91(1), A1–A15 (2013)

    MathSciNet  Google Scholar 

  3. Ruggeri, T., Sugiyama, M.: Recent developments in extended thermodynamics of dense and rarefied polyatomic gases. Acta Appl. Math. (2014), in press

  4. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  5. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)

    Article  MathSciNet  Google Scholar 

  6. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: On the six-field model of fluids based on extended thermodynamics. Meccanica (2014). doi:10.1007/s11012-014-9886-0

    MathSciNet  Google Scholar 

  7. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25, 727–737 (2013)

    Article  MathSciNet  Google Scholar 

  8. Arima, T., Taniguchi, S., Sugiyama, M.: Light scattering in rarefied polyatomic gases based on extended thermodynamics. In: Proceedings of the 34th Symposium on Ultrasonic Electronics, pp. 15–16 (2013)

    Google Scholar 

  9. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe–Teller theory. Phys. Rev. E 89, 013025 (2014)

    Article  Google Scholar 

  10. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)

    Article  Google Scholar 

  11. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics. Acta Appl. Math. (2014), in press

  12. Barbera, E., Brini, F., Sugiyama, M.: Heat transfer problem in a van der Waals gas. Acta Appl. Math. (2014), in press

  13. Arima, T., Barbera, E., Brini, F., Sugiyama, M.: The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas. J. Phys. A. (submitted)

  14. Arima, T., Mentrelli, A., Ruggeri, T.: Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111–140 (2014)

    Article  MathSciNet  Google Scholar 

  15. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A 392, 1302–1317 (2013)

    Article  MathSciNet  Google Scholar 

  16. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9, 205–212 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1963)

    Google Scholar 

  18. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon, London (1958)

    Google Scholar 

  19. Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. J. Ration. Mech. Anal. 5, 1–54 (1956)

    MATH  MathSciNet  Google Scholar 

  20. Muracchini, A., Ruggeri, T., Seccia, L.: Dispersion relation in the high frequency limit and non linear wave stability for hyperbolic dissipative systems. Wave Motion 15(2), 143–158 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, Oxford (1980)

    Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, Non-relativistic Theory. Pergamon, Oxford (1977)

    Google Scholar 

  23. Radzig, A.A., Smirnov, B.M.: Reference Data on Atoms, Molecules, and Ions. Springer, Berlin (1985)

    Book  Google Scholar 

  24. Hanley, H.J.M., McCarty, R.D., Interman, H.: The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. J. Res. Natl. Bur. Stand. A, Phys. Chem. 74, 331–350 (1970)

    Article  Google Scholar 

  25. Assael, M.J., Mixafendi, S., Wakeham, W.A.: The viscosity of normal deuterium in the limit of zero density. J. Phys. Chem. Ref. Data 16, 189–192 (1987)

    Article  Google Scholar 

  26. Saxena, S.C., Saxena, V.K.: Thermal conductivity data for hydrogen and deuterium in the range 100–1100 degrees C. J. Phys. A 3, 309–320 (1970)

    Article  Google Scholar 

  27. Stewart, E.S., Stewart, J.L.: Rotational dispersion in the velocity, attenuation, and reflection of ultrasonic waves in hydrogen and deuterium. J. Acoust. Soc. Am. 24, 194–198 (1952)

    Article  Google Scholar 

  28. Winter, T.G., Hill, G.L.: High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen. J. Acoust. Soc. Am. 42, 848–858 (1967)

    Article  Google Scholar 

  29. Cramer, M.S.: Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24, 066102 (2012). 23 pp.

    Article  Google Scholar 

  30. Assael, M.J., Mixafendi, S., Wakeham, W.A.: The viscosity and thermal conductivity of normal hydrogen in the limit of zero density. J. Phys. Chem. Ref. Data 15, 1315–1322 (1986)

    Article  Google Scholar 

  31. Emanuel, G.: Bulk viscosity of a dilute polyatomic gas. Phys. Fluids A, Fluid Dyn. 2(12), 2252–2254 (1990)

    Article  Google Scholar 

  32. Meixner, J.: Absorption und dispersion des schalles in gasen mit chemisch reagierenden und anregbaren komponenten. I. Ann. Phys. 43, 470–487 (1943)

    Article  MathSciNet  Google Scholar 

  33. Meixner, J.: Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter berucksichtigung der transporterscheinungen. Acoustica 2, 101–109 (1952)

    MathSciNet  Google Scholar 

  34. Herzfeld, K.F., Litovitz, T.A.: Absorption and Dispersion of Ultrasonic Waves. Academic Press, New York (1959)

    Google Scholar 

  35. Mason, W.P. (ed.): Physical Acoustics, Principles and Methods, vol. II. Academic Press, New York, London (1965). Part A

    Google Scholar 

  36. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136–2140 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Arima.

Additional information

This work was partially supported by Japan Society of Promotion of Science (JSPS) No. 24760055 (S.T.) and No. 25390150 (M.S.) and by National Group of Mathematical Physics GNFM-INdAM (T.R.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arima, T., Taniguchi, S., Ruggeri, T. et al. A Study of Linear Waves Based on Extended Thermodynamics for Rarefied Polyatomic Gases. Acta Appl Math 132, 15–25 (2014). https://doi.org/10.1007/s10440-014-9888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9888-x

Keywords

Mathematics Subject Classification (2000)

Navigation