Skip to main content
Log in

On Asymptotic Effects of Boundary Perturbations in Exponentially Shaped Josephson Junctions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

A parabolic integro differential operator \(\mathcal{L}\), suitable to describe many phenomena in various physical fields, is considered. By means of equivalence between \(\mathcal{L}\) and the third order equation describing the evolution inside an exponentially shaped Josephson junction (ESJJ), an asymptotic analysis for (ESJJ) is achieved, explicitly evaluating, boundary contributions related to the Dirichlet problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rionero, S.: Asymptotic behaviour of solutions to a nonlinear third order P.D.E. modeling physical phenomena. Boll. Unione Matematica Italiana (2012)

  2. Carillo, S., Valente, V., Caffarelli, G.V.: A Linear viscoelasticity problem with a singular memory kernel: An existence and uniqueness result. Differ. Integral Equ. 26(9–10), 1115–1125 (2013)

    MATH  Google Scholar 

  3. Scott, A.C.: The Nonlinear Universe: Chaos, Emergence, Life. Springer, Berlin (2007)

    Google Scholar 

  4. Scott, A.C.: Neuroscience: A Mathematical Primer. Springer, Berlin (2002)

    Google Scholar 

  5. D’Anna, A., De Angelis, M., Fiore, G.: Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions. Acta Appl. Math. 122, 255–267 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. De Angelis, M.: On exponentially shaped Josephson junctions. Acta Appl. Math. 122, 179–189 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Angelis, M.: On a model of superconductivity and biology. Adv. Appl. Math. Sci. 7, 41–50 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Angelis, M.D., Fiore, G.: Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect. J. Math. Anal. Appl. 404(2), 477–490 (2013)

    Article  MathSciNet  Google Scholar 

  9. De Angelis, M., Fiore, G.: Diffusion effects in a superconductive model. Commun. Pure Appl. Anal. 13(1), 217–223 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bini, D., Cherubini, C., Filippi, S.: Viscoelastic Fizhugh-Nagumo models. Phys. Rev. E 041929 (2005)

  11. Renardy, M.: On localized Kelvin-Voigt damping. ZAMM Z. Angew. Math. Mech. 84 (2004)

  12. De Angelis, M., Renno, P.: Diffusion and wave behavior in linear Voigt model. C. R. Méc. 330, 21–26 (2002)

    Article  MATH  Google Scholar 

  13. Morro, A., Payne, L.E., Straughan, B.: Decay, growth,continuous dependence and uniqueness results of generalized heat theories. Appl. Anal. 38 (1990)

  14. Flavin, J.N., Rionero, S.: Qualitative Estimates for Partial Differential Equations: An Introduction. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  15. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1971)

    Google Scholar 

  16. De Angelis, M., Monte, A.M., Renno, P.: On fast and slow times in models with diffusion. Math. Models Methods Appl. Sci. 12(12), 1741–1749 (2012)

    Article  Google Scholar 

  17. Straughan, B.: Heat Waves. Springer Series in Applied Mathematical Sciences, vol. 177 (2011)

  18. De Angelis, M.: Asymptotic analysis for the strip problem related to a parabolic third order operator. Appl. Math. Lett. 14, 425–430 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Keener, J.P., Sneyd, J.: Mathematical Physiology. Springer, New York (1998)

    MATH  Google Scholar 

  20. Torcicollo, I.: On the dynamics of the nonlinear duopoly game. Int. J. Non-Linear Mech. 57, 31–38 (2013)

    Article  Google Scholar 

  21. Capone, F., De Cataldis, V., De Luca, R.: On the nonlinear stability of an epidemic SEIR reaction-diffusion model. Ric. Mat. 62, 161–181 (2013)

    Article  MathSciNet  Google Scholar 

  22. Gentile, M., Straughan, B.: Hyperbolic Diffusion with Christov-Morro Theory. Mathematics and Computers in Simulation (2012). doi:10.1016/j.matcom.2012.07.010

    Google Scholar 

  23. De Angelis, M.: A priori estimates for excitable models. Meccanica 48(10), 2491–2496 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. De Angelis, M.: Asymptotic estimates related to an integro differential equation. Nonlinear Dyn. Syst. Theory 13(3), 217–228 (2013)

    MATH  MathSciNet  Google Scholar 

  25. De Angelis, M., Renno, P.: Asymptotic effects of boundary perturbations in excitable systems. Accepted by Discrete Contin. Dyn. Syst.—Ser. B, http://arxiv.org/pdf/1304.3891v1.pdf

  26. De Angelis, M., Renno, P.: Existence, uniqueness and a priori estimates for a non linear integro-differential equation. Ric. Mat. 57, 95–109 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Barone Paterno’: Physical and applications of the Josephson effect (1982)

  28. Benabdallah, A., Caputo, J.G., Scott, A.C.: Exponentially tapered Josephson flux-flow oscillator. Phys. Rev. B 54(22), 16139 (1996)

    Article  Google Scholar 

  29. Benabdallah, A., Caputo, J.G., Scott, A.C.: Laminar phase flow for an exponentially tapered Josephson oscillator. J. Appl. Phys. 588(6), 3527 (2000)

    Article  Google Scholar 

  30. Carapella, G., Martucciello, N., Costabile, G.: Experimental investigation of flux motion in exponentially shaped Josephson junctions. Phys. Rev. B 66, 134531 (2002)

    Article  Google Scholar 

  31. Boyadjiev, T.L., Semerdjieva, E.G., Shukrinov, Yu.M.: Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities. Physica C 460–462 (2007)

  32. Jaworski, M.: Exponentially tapered Josephson junction: some analytic results. Theor. Math. Phys. 144, 1176–1180 (2005)

    Article  MATH  Google Scholar 

  33. Shukrinov, Yu.M., Semerdjieva, E.G., Boyadjiev, T.L.: Vortex structure in exponentially shaped Josephson junctions. J. Low Temp Phys. 299 (2005)

  34. Jaworski, M.: Fluxon dynamics in exponentially shaped Josephson junction. Phys. Rev. B 71, 22 (2005)

    Article  Google Scholar 

  35. Cannon, J.R.: The One-Dimensional Heat Equation. Addison-Wesley, Reading (1984)

    Book  MATH  Google Scholar 

  36. De Angelis, M., Maio, A., Mazziotti, E.: Existence and uniqueness results for a class of non linear models. In: Mathematical Physics Models and Engineering Sciences, pp. 191–202 (2008) (eds. Liguori, Italy)

    Google Scholar 

Download references

Acknowledgements

This paper has been performed under the auspices of G.N.F.M. of I.N.D.A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica De Angelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Angelis, M., Renno, P. On Asymptotic Effects of Boundary Perturbations in Exponentially Shaped Josephson Junctions. Acta Appl Math 132, 251–259 (2014). https://doi.org/10.1007/s10440-014-9898-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9898-8

Keywords

Mathematics Subject Classification (2010)

Navigation