Skip to main content

Advertisement

Log in

High Velocity Impact Response of Composite Lattice Core Sandwich Structures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this research, carbon fiber reinforced polymer (CFRP) composite sandwich structures with pyramidal lattice core subjected to high velocity impact ranging from 180 to 2,000 m/s have been investigated by experimental and numerical methods. Experiments using a two-stage light gas gun are conducted to investigate the impact process and to validate the finite element (FE) model. The energy absorption efficiency (EAE) in carbon fiber composite sandwich panels is compared with that of 304 stainless-steel and aluminum alloy lattice core sandwich structures. In a specific impact energy range, energy absorption efficiency in carbon fiber composite sandwich panels is higher than that of 304 stainless-steel sandwich panels and aluminum alloy sandwich panels owing to the big density of metal materials. Therefore, in addition to the multi-functional applications, carbon fiber composite sandwich panels have a potential advantage to substitute the metal sandwich panels as high velocity impact resistance structures under a specific impact energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hazell, P.J., Kister, G., Stennett, C., Bourque, P., Cooper, G.: Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere. Compos. Part A 38, 866–874 (2008)

    Article  Google Scholar 

  2. Cantwell, W.J., Morton, J.: Impact perforation of carbon fiber reinforced plastic. Compos. Sci. Technol. 38, 119–41 (1990)

    Article  Google Scholar 

  3. Tanabe, Y., Aoki, M., Fujii, K., Kasano, H., Yasuda, E.: Fracture behavior of cfrps impacted by relatively high-velocity steel sphere. Int. J. Impact Eng. 28, 627–42 (2003)

    Article  Google Scholar 

  4. Tanabe, Y., Aoki, M.: Stress and strain measurements in carbon-related materials impacted by a high-velocity steel sphere. Int. J. Impact Eng. 28, 1045–59 (2003)

    Article  Google Scholar 

  5. Hammond, R.I., Proud, W.G., Goldrein, H.T., Field, J.E.: High-resolution optical study of the impact of carbon-fibre reinforced polymers with different lay-ups. Int. J. Impact Eng. 30, 69–86 (2004)

    Article  Google Scholar 

  6. Will, M.A., Franz, T., Nurick, G.N.: The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact. Compos. Struct. 58, 259–70 (2002)

    Article  Google Scholar 

  7. Lopez-Puente, J., Zaera, R., Navarro, C.: The effect of low temperatures on the intermediate and high velocity impact response of CFRP. Compos. Part B 33, 559–66 (2002)

    Article  Google Scholar 

  8. Hazell, P.J., Kister, G., Bourque, P., Cooper, G.: Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere. Compos. Part A Appl. Sci. 39, 866–74 (2008)

    Article  Google Scholar 

  9. Hazell, P.J., Cowie, A., Kister, G., Stennett, C., Cooper, G.A.: Penetration of a woven CFRP laminate by a high velocity steel sphere impacting at velocities of up to 1875 m/s. Int. J. Impact Eng. (2009). doi:10.1016/j.ijimpeng.2008.12.001

    Google Scholar 

  10. Fujii, K., Aoki, M., Kiuchi, N., Yasuda, E., Tanabe, Y.: Impact perforation of CFRPs using high-velocity steel sphere. Int. J. Impact Eng. 27, 497–508 (2002)

    Article  Google Scholar 

  11. Hosur, M.V., Vaidya, U.K., Ulven, C., Jeelani, S.: Performance of stitched/unstitched woven carbon/epoxy composites under high velocity impact loading. Compos. Struct. 64, 455–66 (2004)

    Article  Google Scholar 

  12. Larsson, F.: Damage tolerance of a stitched carbon/epoxy laminate. Compos. Part A Appl. Sci. Manuf. 28(11), 923–34 (1997)

    Article  Google Scholar 

  13. Kim, H., Welch, D.A., Kedward, K.T.: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos. Part A Appl. Sci. Manuf. 34, 25–41 (2003)

    Article  Google Scholar 

  14. Cantwell, W.J., Morton, J.: Comparison of low and high velocity impact response of CFRP. Composites 20(6), 545–51 (1989)

    Article  Google Scholar 

  15. Cantwell, W.J., Morton, J.: Impact perforation of carbon fibre reinforced plastic. Compos. Sci. Technol. 38, 119–41 (1990)

    Article  Google Scholar 

  16. Lopez-Puente, J., Zaera, R., Navarro, C.: An analytical model for high velocity impacts on thin cfrps woven laminates. Int. J. Solids Struct. 44, 2837–51 (2007)

    Article  Google Scholar 

  17. Lopez-Puente J, Zaera R, Navarro C.: Numerical modelling of high velocity impact on CFRPs at low temperature. In: 14th Dymat Technical Meeting, pp. 121–9. Sevilla Spain (2002)

  18. Reid, S.R., Wen, H.M.: Impact behaviour of fibre-reinforced composite materials and structures. Woodhead Publication, Cambridge (2000). Ch Perforation of FRP laminates and sandwich panels subjected to missile impact

    Book  Google Scholar 

  19. Chen, J.K., Allahdadi, F.A., Carney, T.C.: High-velocity impact of graphite/epoxy composite laminates. Compos. Sci. Technol. 57, 1369–79 (1997)

    Article  Google Scholar 

  20. Thama, C.Y., Tanb, V.B.C., Lee, H.P.: Ballistic impact of a KEVLAR helmet: Experiment and simulations. Int. J. Impact Eng. 35, 304–318 (2008)

    Article  Google Scholar 

  21. Silva, M.A.G., Cisma-siu, C., Chiorean, C.G.: Numerical simulation of ballistic impact on composite laminates. Int. J. Impact Eng. 31, 289–306 (2005)

    Article  Google Scholar 

  22. Lopez-Puente, J., Zaera, R., Navarro, C.: Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere. Compos. Part A 39, 866–874 (2008)

    Article  Google Scholar 

  23. Goldsmith, W., Wang, G.-T., Li, K., Cane, D.: Perforation of cellular sandwich plates. Int. J. Impact Eng. 19, 361 (1997)

    Article  Google Scholar 

  24. Zhao, H., Elnasri, I., Girad, Y.: Perforation of aluminum foam core sandwich panels under impact loading-an experimental study. Int. J. Impact Eng. 34, 1246 (2007)

    Article  Google Scholar 

  25. Sibeaud JM, Prieur C, Puillet C.: Hypervelocity impact on honeycomb target structures: experimental part. In: Proceedings of the fourth European conference on space debris. Darmstadt, Germany (18–20 April 2005)

  26. Taylor, E.A., Glanville, J.P., Clegg, R.A., Turner, R.G.: Hypervelocity impact on spacecraft honeycomb: hydrocode simulation and damage law. Int. J. Impact Eng. 29, 691–702 (2003)

    Article  Google Scholar 

  27. Sibeaud, J.M., Thamie, L., Puillet: Hypervelocity impact on honeycomb target structures: Experiments and modeling. Int. J. Impact Eng. 35, 1799–1807 (2008)

    Article  Google Scholar 

  28. Yungwirth, C.J., Wadley, H.N.G., O’Connor, J.H., Zakraysek, A.J., Deshpande, V.S.: Impact response of sandwich plates with a pyramidal lattice core. Int. J. Impact Eng. 35, 920–936 (2008)

    Article  Google Scholar 

  29. Wang, B., et al.: Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core. Mater. Des. 31, 2659–2663 (2010)

    Article  Google Scholar 

  30. NATO STAN AG-2920, Ballistic test method for personal armour materials and combat clothing. 2nd edition. NATO Standardization Agency (July 2003)

  31. Metals handbook, vol. 1, 10th ed. Properties and selections: irons, steels and high performance alloys. ASM International, Materials Park, OH (1990)

  32. Lopez-Puente, J., Zaera, R., Navarro, C.: Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Compos. Part A Appl. Sci. 39, 374–87 (2008)

    Article  Google Scholar 

  33. Abaqus Explicit User’s Manual, version 6.5 Edition, HKS, (2005)

  34. Hahin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–34 (1980)

    Article  Google Scholar 

  35. Chang, F.K., Chang, K.Y.: Post-failure analysis of bolted composite joints in tension or shear-out mode failure. J. Compos. Mater. 21, 809–33 (1987)

    Article  Google Scholar 

  36. Chang, F.K., Chang, K.Y.: A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21, 834–55 (1987)

    Article  Google Scholar 

Download references

Acknowledgments

The present work is supported by National Science Foundation of China under grant Nos. 11202059, Natural Science Foundation of Heilongjiang Province (No. A201204), the Major State Basic Research Development Program of China (973 Program) under grant No. 2011CB600303, Key Laboratory Opening Funding of Advanced Composites in Special Environment(2011) and the fundamental research funds for the central Universities(Grant No. HIT.NSRIF.2010069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Zhang, G., Wang, S. et al. High Velocity Impact Response of Composite Lattice Core Sandwich Structures. Appl Compos Mater 21, 377–389 (2014). https://doi.org/10.1007/s10443-013-9345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9345-4

Keywords

Navigation