Skip to main content
Log in

Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang, L., Li, Z., Sun, T.: Effects of gear-shape fibre on the transverse mechanical properties of unidirectional composites: virtual material design by computational micromechanics. Appl. Compos. Mater. 1–14 (2017). doi:10.1007/s10443-016-9580-6

  2. Han, G., Guan, Z., Li, Z.: Microscopic progressive damage simulation and scale-span analysis of cross-ply laminate based on the elastic–plastic theory. Appl. Compos. Mater. 22(1), 1–12 (2015)

    Article  Google Scholar 

  3. Ren, Y., Jiang, H., Ji, W.: Improvement of progressive damage model to predicting crashworthy composite corrugated plate. Appl. Compos. Mater. 1–22 (2017). doi:10.1007/s10443-017-9610-z

  4. Guo, S., Li, D., Zhang, X.: Buckling and post-buckling of a composite C-section with cutout and flange reinforcement. Compos. Part B. 60(60), 119–124 (2014)

    Article  Google Scholar 

  5. Liu, P.F., Yang, Y.H., Gu, Z.P.: Finite element analysis of progressive failure and strain localization of carbon fiber/epoxy composite laminates by ABAQUS. Appl. Compos. Mater. 22(6), 711–731 (2015)

    Article  Google Scholar 

  6. Li, D.S., Li, J.L., Chen, L.: Finite element analysis of mechanical properties of 3D four-directional rectangular braided composites part 1: microgeometry and 3D finite element model. Appl. Compos. Mater. 17(4), 373–387 (2010)

    Article  Google Scholar 

  7. Li, D.S., Fang, D.N., Lu, Z.X.: Finite element analysis of mechanical properties of 3D four-directional rectangular braided composites—part 2: validation of the 3D finite element model. Appl. Compos. Mater. 17(4), 389–404 (2010)

    Article  Google Scholar 

  8. Xu, L., Jin, C.Z., Ha, S.K.: Ultimate strength prediction of braided textile composites using a multi-scale approach. J. Compos. Mater. 49(4), 477–494 (2014)

    Article  Google Scholar 

  9. Wang, C., Zhong, Y., Adaikalaraj, P.F.B.: Strength prediction for bi-axial braided composites by a multi-scale modeling approach. J. Mater. Sci. 51(12), 6002–6018 (2016)

    Article  Google Scholar 

  10. Miravete Bielsa, J.M.: 3D mesomechanical analysis of three-axial braided composite materials. Compos. Sci. Technol. 66(15), 2954–2964 (2006)

    Article  Google Scholar 

  11. Ivanov, D.S., Baudry, F., Broucke, B.V.D.: Failure analysis of triaxial braided composite. Compos. Sci. Technol. 69(9), 1372–1380 (2009)

    Article  Google Scholar 

  12. Binienda, W.K., Li, X.A.: Mesomechanical model for numerical study of two dimensional Triaxially braided composite. J. Eng. Mech. 136(11), 1366–1379 (2010)

    Article  Google Scholar 

  13. Zhong, S., Guo, L., Liu, G.: A continuum damage model for three-dimensional woven composites and finite element implementation. Compos. Struct. 128, 1–9 (2015)

    Article  Google Scholar 

  14. Lu, Z., Xia, B., Yang, Z.: Investigation on the tensile properties of three-dimensional full five-directional braided composites. Comput. Mater. Sci. 77(3), 445–455 (2013)

    Article  Google Scholar 

  15. Wang, B., Fang, G., Liang, J.: Failure locus of 3D four-directional braided composites under biaxial loading. Appl. Compos. Mater. 19(3), 529–544 (2012)

    Article  Google Scholar 

  16. Zako, M., Uetsuji, Y., Kurashiki, T.: Finite element analysis of damaged woven fabric composite materials. Compos. Sci. Technol. 63(3), 507–516 (2003)

    Article  Google Scholar 

  17. Zhang, D., Waas, A.M., Yen, C.F.: Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part I: experimental studies. Int. J. Solids Struct.. s 75–76, 309–320 (2015)

  18. Zhang, D., Waas, A.M., Yen, C.F.: Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part II: mechanics based multiscale computational modeling of progressive damage and failure. Int. J. Solids Struct.. s 75–76, 321–335 (2015)

  19. Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89(1), 126–133 (2009)

    Article  Google Scholar 

  20. Zhang, C., Xu, X.: Finite element analysis of 3D braided composites based on three unit-cells models. Compos. Struct. 98(3), 130–142 (2013)

    Article  Google Scholar 

  21. Zhang, C., Mao, C., Zhou, Y.: Meso-scale damage simulation of 3D braided composites under quasi-static axial tension. Appl. Compos. Mater. 1–21 (2017). doi:10.1007/s10443-016-9579-z

  22. Xiao, X., Kia, H.G., Gong, X.J.: Strength prediction of a triaxially braided composite. Compos. A: Appl. Sci. Manuf. 42(8), 1000–1006 (2011)

    Article  Google Scholar 

  23. Littell, J.D., Binienda, W.K., Arnold, W.A.: Effect of microscopic damage events on static and ballistic impact strength of triaxial braid composites. Compos A Appl. Sci. Manuf. 40(12), 1846–1862 (2009)

    Article  Google Scholar 

  24. García-Carpintero, A., Herráez, M., Xu, J.: A multi material Shell model for the mechanical analysis of Triaxial braided composites. Appl. Compos. Mater. 1–21 (2017). doi:10.1007/s10443-017-9593-9

  25. Zhang, C., Li, N., Wang, W.: Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos. Struct. 125, 104–116 (2015)

    Article  Google Scholar 

  26. Zhang, C., Binienda, W.K., Goldberg, R.K.: Meso-scale failure modeling of single layer triaxial braided composite using finite element method. Compos. A: Appl. Sci. Manuf. 58(58), 36–46 (2014)

    Article  Google Scholar 

  27. Zhang, C., Binienda, W.K.: Numerical analysis of free-edge effect on size-influenced mechanical properties of single-layer Triaxially braided composites. Appl. Compos. Mater. 21(6), 841–859 (2014)

    Article  Google Scholar 

  28. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  29. Murakami, S.: Mechanical modeling of material damage. ASME J Appl. Mech. 55, 280–286 (1988)

    Article  Google Scholar 

  30. Dassault Systemes: Abaqus 6.13Documentation (2013)

  31. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)

    Article  Google Scholar 

  32. Alfano, G., Sacco, E.: Combining interface damage and friction in a cohesive-zone model. Int. J. Numer. Methods Eng. 68(5), 542–582 (2010)

    Article  Google Scholar 

  33. Littell, J., Justin, D.: Measurement of epoxy resin tension, compression, and shear stress–strain curves over a wide range of strain rates using small test specimens. J. Aerosp. Eng. 21(3), 162–173 (2008)

    Article  Google Scholar 

  34. Zhang, C., Binienda, W.K., Kohlman, L.W.: Analytical model and numerical analysis on the elastic behavior of Triaxial braided composites. J. Aerosp. Eng. 27(3), 473–483 (2014)

    Article  Google Scholar 

  35. Alfano, G., Crisfield, M.A.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50(7), 1701–1736 (2001)

    Article  Google Scholar 

  36. Alfano, G.: On the influence of the shape of the interface law on the application of cohesive-zone models. Compos. Sci. Technol. 66(6), 723–730 (2006)

    Article  Google Scholar 

  37. Kohlman, L.W.: Evaluation of test methods for triaxial braid composites and the development of a large multiaxial test frame for validation using braided tube specimens. The University of Akron; (2012)

Download references

Acknowledgements

This research is co-supported by the National Natural Science Foundation of China (No. 11402011) and the Fundamental Research Funds for the Central Universities (No. 201401390741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiru Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zhang, S., Jiang, H. et al. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load. Appl Compos Mater 25, 335–352 (2018). https://doi.org/10.1007/s10443-017-9623-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9623-7

Keywords

Navigation