Skip to main content
Log in

Local error analysis for approximate solutions of hyperbolic conservation laws

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider approximate solutions to nonlinear hyperbolic conservation laws. If the exact solution is unavailable, the truncation error may be the only quantitative measure for the quality of the approximation. We propose a new way of estimating the local truncation error, through the use of localized test-functions. In the convex scalar case, they can be converted intoL loc estimates, following theLip′ convergence theory developed by Tadmor et al. Comparisons between the local truncation error and theL loc -error show remarkably similar behavior. Numerical results are presented for the convex scalar case, where the theory is valid, as well as for nonconvex scalar examples and the Euler equations of gas dynamics. The local truncation error has proved a reliable smoothness indicator and has been implemented in adaptive algorithms in [Karni, Kurganov and Petrova, J. Comput. Phys. 178 (2002) 323–341].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor,Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, C.I.M.E. Course in Cetraro, Italy, June 1997, ed. A. Quarteroni, Lecture Notes in Mathematics, Vol. 1697 (Springer, New York, 1998).

    Chapter  Google Scholar 

  2. C. de Boor,A Practical Guide to Splines, Applied Mathematical Sciences, Vol. 27 (Springer, New York, 1978).

    Chapter  Google Scholar 

  3. E. Godlewski and P.-A. Raviart,Numerical Approximation of Hyperbolic Systems of Conservation Laws (Springer, New York, 1996).

    Book  Google Scholar 

  4. P. Houston and E. Süli, Local a posteriori error indicators for hyperbolic problems, Technical Report NA-97/14, Oxford University Computing Laboratory (1997), http://web.comlab.ox.ac.uk/oucl/publications/natr/na-97-14.html.

  5. S. Karni, A. Kurganov and G. Petrova, A smoothness indicator for adaptive algorithms for hyperbolic systems, J. Comput. Phys. 178 (2002) 323–341.

    Article  MathSciNet  Google Scholar 

  6. D. Kröner,Numerical Schemes for Conservation Laws (Wiley, Chichester, 1997).

    MATH  Google Scholar 

  7. A. Kurganov, Conservation laws: stability of numerical approximations and nonlinear regularization, Ph.D. thesis, Tel-Aviv University, Israel (1997).

    Google Scholar 

  8. A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23 (2001) 707–740.

    Article  MathSciNet  Google Scholar 

  9. R. LeVeque,Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (Cambridge Univ. Press, Cambridge, 2002).

    Chapter  Google Scholar 

  10. H. Nessyahu and E. Tadmor, The convergence rate of approximate solutions for nonlinear scalar conservation laws, SIAM J. Numer. Anal. 29 (1992) 1505–1519.

    Article  MathSciNet  Google Scholar 

  11. H. Nessyahu, E. Tadmor and T. Tassa, The convergence rate of Godunov type schemes, SIAM J. Numer. Anal. 31 (1994) 1–16.

    Article  MathSciNet  Google Scholar 

  12. R. Richtmyer and K.W. Morton,Difference Methods for Initial-Value Problems, 2nd ed. (Interscience, New York, 1967).

    MATH  Google Scholar 

  13. P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys. 43 (1981) 357–372.

    Article  MathSciNet  Google Scholar 

  14. J. Smoller,Shock Waves and Reaction Diffusion-Equations, 2nd ed., Grundleheren Series, Vol. 258 (Springer, New York, 1994).

    Book  Google Scholar 

  15. G. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 22 (1978) 1–31.

    Article  MathSciNet  Google Scholar 

  16. E. Süli, A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems, Lecture Notes in Computer Science and Engineering, eds. D. Kröner, M. Ohlberger and C. Rhode, Vol. 5 (Springer, New York, 1998); also, Technical Report NA-97/21, Oxford University Computing Laboratory (1997); http://web.comlab.ox.ac.uk/oucl/publications/natr/na-97-21.html.

    Google Scholar 

  17. E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Numer. Anal. 28 (1991) 891–906.

    Article  MathSciNet  Google Scholar 

  18. E. Tadmor and T. Tang, Pointwise convergence rate for nonlinear conservation laws, in:Proc. of the 7th Internat. Conf. on Hyperbolic Problems, Zürich, 1998, eds. M. Fey and R. Jeltsch, International Series of Numerical Mathematics, Vol. 130 (Birkhäuser, Basel, 1999) pp. 925–934.

    Google Scholar 

  19. E. Tadmor and T. Tang, Pointwise error estimates for scalar conservation laws with piecewise smooth solutions, SIAM J. Numer. Anal. 36 (1999) 1739–1756.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Tadmor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karni, S., Kurganov, A. Local error analysis for approximate solutions of hyperbolic conservation laws. Adv Comput Math 22, 79–99 (2005). https://doi.org/10.1007/s10444-005-7099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-7099-8

Keywords

AMS subject classification

Navigation