Skip to main content
Log in

Adaptive frame methods for elliptic operator equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the development of adaptive numerical methods for elliptic operator equations. We are especially interested in discretization schemes based on frames. The central objective is to derive an adaptive frame algorithm which is guaranteed to converge for a wide range of cases. As a core ingredient we use the concept of Gelfand frames which induces equivalences between smoothness norms and weighted sequence norms of frame coefficients. It turns out that this Gelfand characteristic of frames is closely related to their localization properties. We also give constructive examples of Gelfand wavelet frames on bounded domains. Finally, an application to the efficient adaptive computation of canonical dual frames is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška and W.C. Rheinboldt, A posteriori error estimates for finite element methods, Internat. J. Numer. Math. Engrg. 12 (1978) 1597–1615.

    Article  MATH  Google Scholar 

  2. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comput. 44 (1985) 283–301.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet schemes for elliptic problems: Implementation and numerical experiments, SIAM J. Sci. Comput. 23(3) (2001) 910–939.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Becker, C. Johnson and R. Rannacher, Adaptive error control for multigrid finite element methods, Computing 55 (1995) 271–288.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bergh and J. Löfström, Interpolation Spaces (Springer-Verlag, Berlin, 1976).

    MATH  Google Scholar 

  6. F. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996) 1188–1204.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Borup, Pseudodifferential operators on α-modulation spaces, J. Funct. Spaces Appl. 2(2) (2004) 107–123.

    MathSciNet  MATH  Google Scholar 

  8. L. Borup and M. Nielsen, Nonlinear approximation in α-modulation spaces, Preprint (2003).

  9. P.G. Casazza and O. Christensen, Approximation of the inverse frame operator and application to Gabor frames, J. Approx. Theory 130(2) (2000) 338–356.

    Article  MathSciNet  Google Scholar 

  10. O. Christensen, Finite-dimensional approximation of the inverse frame operator, J. Fourier Anal. Appl. 6(1) (2000) 79–91.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, Basel, 2003).

    MATH  Google Scholar 

  12. O. Christensen and T. Strohmer, The finite section method and problems in frame theory, Preprint (2003).

  13. C. Chui and W. Stöckler, Nonstationary tight wavelet frames on bounded intervals, Ergebnisberichte Angewandte Mathematik 230, Universität Dortmund (2003).

  14. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations – Convergence rates, Math. Comp. 70 (2001) 27–75.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Cohen, W. Dahmen and R. DeVore, Adaptive methods for nonlinear variational problems, Report 221, IGPM, RWTH Aachen (2002).

  16. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods II: Beyond the elliptic case, Found. Comput. Math. 2(3) (2002) 203–245.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Cordero and K. Gröchenig, Localization of frames II, Appl. Comput. Harmon. Anal. 17(1) (2004) 29–47.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23 (1997) 21–48.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet methods for saddle point problems – Optimal convergence rates, SIAM J. Numer. Anal. 40(4) (2002) 1230–1262.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Dahlke, M. Fornasier and T. Raasch, Adaptive frame methods for elliptic operator equations, Bericht 2004-3, FB 12 Mathematik und Informatik, Philipps-Universität Marburg (2004).

  21. S. Dahlke, R. Hochmuth and K. Urban, Adaptive wavelet methods for saddle point problems, M2AN Math. Model. Numer. Anal. 34 (2000) 1003–1022.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Dahlke, G. Steidl and G. Teschke, Weighted coorbit spaces and Banach frames on homogeneous spaces, J. Fourier Anal. Appl. 10(5) (2004) 507–539.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numerica 6 (1997) 55–228.

    MathSciNet  Google Scholar 

  24. W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63(3) (1992) 315–344.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline–wavelets on the interval – Stability and moment conditions, Appl. Comput. Harmon. Anal. 6 (1999) 132–196.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Dahmen, S. Prössdorf and R. Schneider, Multiscale methods for pseudodifferential operators on smooth manifolds in: Proc. of the Internat. Conf. on Wavelets: Theory, Algorithms and Applications, eds. C.K. Chui, L. Montefusco and L. Puccio (Academic Press, New York, 1994) pp. 385–424.

    Google Scholar 

  27. W. Dahmen and R. Schneider, Wavelets with complementary boundary conditions – Function spaces on the cube, Result. Math. 34(3/4) (1998) 255–293.

    MathSciNet  MATH  Google Scholar 

  28. W. Dahmen and R. Schneider, Composite wavelet bases for operator equations, Math. Comp. 68 (1999) 1533–1567.

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Dahmen and R. Schneider, Wavelets on manifolds I. Construction and domain decomposition, SIAM J. Math. Anal. 31 (1999) 184–230.

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Dahmen, J. Vorloeper and K. Urban, Adaptive wavelet methods – basic concepts and applications to the Stokes problem, in: Proc. of the Internat. Conf. of Computational Harmonic Analysis, ed. D.-X. Zhou (World Scientific, Singapore, 2002) pp. 39–80.

    Google Scholar 

  31. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  32. R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998) 51–150.

    Article  MathSciNet  Google Scholar 

  33. R. DeVore and I. Daubechies, Reconstruction of bandlimited function from very coarsely quantized data: A family of stable sigma–delta modulators of arbitrary order, Ann. of Math. 158(2) (2003) 679–710.

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33 (1996) 737–785.

    Article  Google Scholar 

  35. H.G. Feichtinger and M. Fornasier, Flexible Gabor-wavelet atomic decompositions for L 2-Sobolev spaces, Ann. Mat. Pura Appl. (2004) to appear.

  36. H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86(2) (1989) 307–340.

    Article  MathSciNet  MATH  Google Scholar 

  37. H.G. Feichtinger and K. Gröchenig, Iterative reconstruction of multivariate band-limited functions from irregular sampling values, SIAM J. Math. Anal. 23(1) (1992) 244–261.

    Article  MathSciNet  MATH  Google Scholar 

  38. H.G. Feichtinger and T. Strohmer, eds., Gabor Analysis and Algorithms (Birkhäuser, Basel, 1998).

    MATH  Google Scholar 

  39. H.G. Feichtinger and T. Strohmer, eds., Advances in Gabor Analysis (Birkhäuser, Basel, 2003).

    MATH  Google Scholar 

  40. M. Fornasier, Banach frames for alpha-modulation spaces, arXiv:math.FA/0410549.

  41. M. Fornasier, Constructive methods for numerical applications in signal processing and homogenization problems, Ph.D. thesis, University of Padova and University of Vienna (2002).

  42. M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289(1) (2004) 180–199.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Fornasier and K. Gröchenig, Intrinsic localization of frames, Constr. Approx. (2005) to appear.

  44. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Fourier Anal. Appl. 93(1) (1990) 34–170.

    MathSciNet  MATH  Google Scholar 

  45. K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112(1) (1991) 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  46. K. Gröchenig, Foundations of Time–Frequency Analysis (Birkhäuser, Basel, 2000).

    Google Scholar 

  47. K. Gröchenig, Localization of frames, in: GROUP 24: Physical and Mathematical Aspects of Symmetries (Bristol), eds. J.-P. Gazeau, R. Kerner, J.-P. Antoine, S. Metens and J.-Y. Thibon (IOP Publishing, 2003) to appear.

  48. K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl. 10(2) (2004) 105–132.

    Article  MathSciNet  MATH  Google Scholar 

  49. K. Gröchenig and M. Leinert, Symmetry of matrix algebras and symbolic calculus for infinite matrices, Preprint (2003).

  50. W. Hackbusch, Elliptic Differential Equations (Springer, Berlin, 1992).

    MATH  Google Scholar 

  51. R.B. Lehoucq and D.C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl. 17(4) (1996) 789–821.

    Article  MathSciNet  MATH  Google Scholar 

  52. P.G. Lemarié, Bases d'ondelettes sur les groupes de lie stratifiés, Bull. Soc. Math. France 117(2) (1989) 213–232.

    Google Scholar 

  53. M. Mommer, Fictitious domain Lagrange multiplier approach: Smoothness analysis, Report 230, IGPM, RWTH Aachen (2003).

  54. R. Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J. Numer. Anal. 41(3) (2003) 1074–1100.

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math. 50 (1994) 67–83.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Werner, Adaptive Frame-Verfahren für elliptische Randwertprobleme, Master thesis, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg (2005) in preparation.

  57. A. Zaanen, Integration (North-Holland, Amsterdam, 1967).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Dahlke.

Additional information

Communicated by Y. Xu

Mathematics subject classifications (2000)

41A25, 41A46, 42C15, 42C40, 46E35, 65F10, 65F20, 65F50, 65N12, 65N55, 65T60

The authors acknowledge the financial support provided through the European Union's Human Potential Programme, under contract HPRN-CT-2002-00285 (HASSIP). The work of the first author was also supported through DFG, Grants Da 360/4-1, Da 360/4-2. The second author also wants to thank the AG Numerik/Wavelet-Analysis Group, Philipps-Universität Marburg, and the ZeTeM, Universität Bremen, Germany, for the hospitality and the stimulating cooperations during the preparation of this work. Currently he is a Postdoc visitor (Individual Marie Curie Fellow, contract MEIF-CT-2004-501018) at Universität Wien, Fakultät für Mathematik, NuHAG, Nordbergstraß e 15, A-1090 Wien, Austria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlke, S., Fornasier, M. & Raasch, T. Adaptive frame methods for elliptic operator equations. Adv Comput Math 27, 27–63 (2007). https://doi.org/10.1007/s10444-005-7501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-7501-6

Keywords

Mathematics subject classifications (2000)

Navigation