Skip to main content
Log in

A splitting algorithm for dual monotone inclusions involving cocoercive operators

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of solving dual monotone inclusions involving sums of composite parallel-sum type operators. A feature of this work is to exploit explicitly the properties of the cocoercive operators appearing in the model. Several splitting algorithms recently proposed in the literature are recovered as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3, 1–24 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating proximal algorithms for weakly coupled convex minimization problems—applications to dynamical games and PDE’s. J. Convex Anal. 15, 485–506 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)

    Article  MATH  Google Scholar 

  4. Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math. 26, 137–150 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: The Baillon–Haddad theorem revisited. J. Convex Anal. 17, 781–787 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  7. Briceño-Arias, L.M., Combettes, P.L.: A monotone+skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Briceño-Arias, L.M., Combettes, P.L.: Monotone operator methods for Nash equilibria in non-potential games. http://arxiv.org/abs/1106.0144 (2011)

  9. Cai, J.-F., Chan, R.H., Shen, Z.: Simultaneous cartoon and texture inpainting. Inverse Probl. Imaging 4, 379–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A., Pock, T.: A first order primal dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G.H.-G., Rockafellar, R.T.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7, 421–444 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, G., Teboulle, M.: A proximal based decomposition method for minimization problems. Math. Program. 64, 81–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., et al. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

    Chapter  Google Scholar 

  15. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators. Set-Valued Var. Anal. http://www.springerlink.com/content/e80v7w7h68534335/ (2011). Published on-line 27 Aug 2011

  16. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Combettes, P.L., Dũng, D., Vũ, B.C.: Proximity for sums of composite functions. J. Math. Anal. Appl. 380, 680–688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Condat, L.: A generic first-order primal-dual method for convex optimization involving Lipschitzian, proximable and linear composite terms. http://hal.archives-ouvertes.fr/hal-00609728/fr/ (2011)

  19. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  20. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  21. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  22. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. (2011, in press)

  23. Mercier, B.: Topics in Finite Element Solution of Elliptic Problems (Lectures on Mathematics, no. 63). Tata Institute of Fundamental Research, Bombay (1979)

    Google Scholar 

  24. Mosco, U.: Dual variational inequalities. J. Math. Anal. Appl. 40, 202–206 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pesquet, J.-C., Pustelnik, N.: A parallel inertial proximal optimization method. http://www.optimization-online.org/DB_HTML/2010/11/2825.html (2011)

  26. Raguet, H., Fadili, J., Peyré, G.: Generalized forward-backward splitting. http://arxiv.org/abs/1108.4404 (2011)

  27. Rockafellar, R.T.: Duality and stability in extremum problems involving convex functions. Pac. J. Math. 21, 167–187 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tseng, P.: Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming. Math. Program. 48, 249–263 (1990)

    Article  MATH  Google Scholar 

  29. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, D.L., Marcotte, P.: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim. 6, 714–726 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bằng Công Vũ.

Additional information

Communicated by Lixin Shen.

This work was supported by the Agence Nationale de la Recherche under grant ANR-08-BLAN-0294-02 and the Vietnam National Foundation for Science and Technology Development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vũ, B.C. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv Comput Math 38, 667–681 (2013). https://doi.org/10.1007/s10444-011-9254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9254-8

Keywords

Mathematics Subject Classifications (2010)

Navigation